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Preface

The study of interacting particle systems has traditionally focused on cases where
the underlying topology can be described by simple structures such as regular
crystalline lattices or by a continuum medium. The emerging science of com-
plex networks addresses complementary situations where the underlying topol-
ogy is a graph whose structure is complex, irregular, and dynamically evolving.
Complex networks are ubiquitous in nature. Natural networks include biologi-
cal networks (metabolic networks, gene regulatory networks, protein interaction
networks, signaling networks, epidemic networks), and ecological networks (food
webs). Man-made networks include communications networks (WWW, Internet,
phone, wireless), transportation infrastructures (power grid, waterways, natural
gas, roadways, airlines), and social interactions (acquaintance networks, scientific
collaboration networks, terrorist networks).

Network science dates back to Leonhard Euler who initiated graph theory by
his solution in 1736 to the famous Königsberg bridges problem. For the next 200
years graph theory dealt with regular or small structures. Network science was
reborn with the introduction of random graph theory, through the seminal works
of Ray Solomonoff and A. Rapoport in 1951, and separately, by the works of Pál
Erdős and Alfréd Rényi in 1959-1960 who introduced probabilistic methods to
graph theory.

Currently, a third revolution is underway. It has been motivated by the emer-
gence of communication networks and the need to characterize biological net-
works and facilitated by the availability of large data sets and the explosive
growth in computing power. Based on characteristics of real-world networks, the
small-world network model by Duncan Watts and Steven Strogatz and the pref-
erential attachment model of scale-free networks by Albert-László Barabási and
Réka Albert have reshaped the way we think of networks.

These contributions showed that the structure of many real-world large-scale
complex networks are far from those of the traditional random graphs, and they
opened up many avenues for future research. They demonstrated that complex
networks is an intellectually deep and ripe area, relevant to many scientific disci-
plines including physics, biology, engineering, and social science, far beyond the
traditional fields of mathematics and computer science.

Now, the research front turns to networks dynamics. Most networks have
the role and function to transport or transfer entities (information, energy, etc.)
along the links. Optimizing transport efficiency and quantifying network vul-
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nerabilities and robustness constitute the next open questions. Predicting the
dynamical evolution of the network structure and its coupling with the trans-
port processes are the ultimate challenge for complex networks science.

This volume of the Lecture Notes in Physics series focuses on the application
of techniques from statistical physics to characterization and modeling of com-
plex networks. There is a deep connection between statistical physics and sta-
tistical graph theory as both aim to characterize macroscopic observables based
on a probabilistic treatment of all microstates of the system. As a concrete ex-
ample, the polymerization process proposed by Paul Flory and used by chemical
physicists to model gelation is equivalent to the growth of a random graph. This
natural connection between statistical mechanics and statistical graph theory is
currently being exploited by many physicists and the present volume presents
the state-of-the-art in the application of statistical physics methods to complex
networks research.

This volume consists of four parts. The first two parts concern theory and
modeling of networks while the last two parts involve applications to real-world
networks. Part I deals with theoretical characterization of structural properties of
networks including spectral and extremal properties and structural robustness.
Part II addresses dynamical aspects of networks including evolving networks,
dynamical processes and transport on networks, and synchronization of net-
works. Part III focuses on information and social networks including publication
networks, collaboration networks, email communication, and board membership
networks. Part IV starts with an overview of networks in biological systems,
followed by applications to genetic and neural networks.

The articles in this volume were written by speakers at the conference “Com-
plex Networks: Structure, Dynamics, and Function”, the 23rd annual conference
of the Center for Nonlinear Studies at Los Alamos National Laboratory, held
from May 12–16, 2003 in Santa Fe, New Mexico, USA. The papers in this volume
are review articles by experts in network science, many of whom made seminal
contributions to the foundations of this novel field. As a collection, this volume
covers a large fraction of the state-of-the art of complex network research. The
articles are aimed at students, newcomers to the field, as well as experts. All
articles have been carefully peer-reviewed not only for scientific content but also
for self-consistency and readability.

The editors thank the authors for their contributions and the referees, whose
comments improved the articles in a significant way. The editors also wish to
thank the conference organizers Benjamin McMahon, Paul Fenimore, and Pieter
Swart, as well as the conference coordinator Roderick Garcia.

Los Alamos, New Mexico, USA Eli Ben-Naim
February 2004 Hans Frauenfelder

Zoltan Toroczkai
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Albert-László Barabási, Zoltán N. Oltvai, Stefan Wuchty . . . . . . . . . . . . . . . . 443
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
2 Basic Network Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
3 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Boolean Modeling of Genetic Regulatory Networks
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Department of Physics
University of Notre Dame
Notre Dame, IN 46556
USA
alb@nd.edu

Stefano Battiston
Laboratoire de Physique Statistique
ENS, 24 rue Lhomond
75005 Paris
France
battiston@ens.fr

Daniel ben-Avraham
Department of Physics
Clarkson University
Potsdam, NY 13699
USA
qd00@clarkson.edu

Eli Ben-Naim
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545
USA
ebn@lanl.gov

Lidia A. Braunstein
Department of Physics
Boston University
Boston, MA 02215
USA
lidia@meta.bu.edu

Sergey V. Buldyrev
Department of Physics
Boston University
Boston, MA 02215
USA
sergey@meta.bu.edu



XIV List of Contributors

Guido Caldarelli
Dipartimento di Fisica
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Pázmány P. stny. 1A,
1117 Budapest
Hungary
fij@angel.elte.hu

Diego Garlaschelli
Dipartimento di Fisica
Università di Siena
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Gábor Szabó
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Tomography and Stability of Complex Networks

Tomer Kalisky1, Reuven Cohen1,2, Daniel ben-Avraham3, and Shlomo Havlin1

1 Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
2 Department of Computer Science and Applied Mathematics, Weizmann Institute of

Science, Rehovot, Israel
3 Department of Physics, Clarkson University, Potsdam, NY 13699, USA

Abstract. We study the structure of generalized random graphs with a given degree
distribution P (k), and review studies on their behavior under both random breakdown
of nodes and intentional attack on the most highly connected nodes. We focus on scale
free networks, where P (k) ∝ k−λ, for m < k < K. We first examine the “Tomography”
of these networks, i.e. the structure of layers around a network node. It is shown that the
distance distribution of all nodes from the maximally connected node of the network
consists of two regimes. The first is characterized by rapid growth in the number
of nodes, and the second decays exponentially. We also show analytically that the
nodes degree distribution at each layer is a power law with an exponential cut-off. We
then show that scale free networks with λ < 3 are robust to random breakdown, but
vulnerable to intentional attack. We also describe the behavior of the network near
the phase transition and show that the critical exponents are influenced by the scale
free nature of the network. We show that the critical exponent for the infinite cluster
size behaves as β = 1/|λ − 3|, and the exponent for the finite clusters size distribution
behaves as τ = 2λ−3

λ−2 , for 2 < λ < 4. For λ > 4 the exponents are β = 1 and τ = 2.5
as in normal infinite dimensional percolation. It is also shown that for all λ > 3 the
exponent for the correlation length is ν = 1 and formulas for the fractal dimensions
are obtained. The size of the largest cluster at the transition point, known to scale as
N2/3 in regular random graphs, is shown to scale as N (λ−2)/(λ−1) for 3 < λ < 4 and
as N2/3 for λ > 4.

1 Introduction

Much attention has been focused recently on the topic of complex network be-
havior [1–5]. Most of the interest has been on scale-free networks, which are
believed to represent many phenomena in nature. Scale-free degree distributions
have been observed in the Internet [6], World Wide Web (WWW) [7], metabolic
networks [8] and many others. For recent reviews see [9–13]. In this paper we
review the topics of structure [14] and percolation of such networks [1–4]. Under-
standing network structure can help devise better networks topologies. It may
also help design more efficient algorithms for routing and searching in commu-
nications networks by taking advantage of the network structure. Percolation is
especially important in forecasting and preventing network malfunctions in the
Internet, as well as other realistic networks, and may also be important in the
understanding of the stability of biological and chemical processes [15].

Percolation theory has been studied for some decades by physicists and math-
ematicians. In general it deals with the dilution of a fraction p (alternatively, the

T. Kalisky, R. Cohen, D. ben-Avraham, and S. Havlin, Tomography and Stability of Complex Net-
works, Lect. Notes Phys. 650, 3–34 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004



4 T. Kalisky et al.

occupation with a density q = 1−p) of the sites or bonds in a graph [16,17]. It is
known that for many graphs a finite threshold pc exists, such that for dilution of
p < pc a spanning cluster (i.e. a cluster of size proportional to that of the entire
network) exists. While for p > pc the graph is fragmented into small clusters.
When a spanning cluster exists, its size relative to the graph is denoted P∞(p).
Near the transition point P∞ ∼ (pc − p)β , where β (as well as other “critical
exponents” such as ν, τ and σ) is universal – that is, depends only on the dimen-
sion and large scale properties of the graph and not on the local structure. At
the transition point the clusters are fractals, while above and below that point
the clusters are fractals up to length scale ξ(p) (the correlation length) and have
the dimension of the graph above ξ. Near criticality, ξ ∼ |pc − p|−ν .

The number of clusters of size s near criticality also follows a scaling form:

ns ∼ s−τe−s/s∗
. (1)

At p = pc, the exponential cutoff s∗ ∼ |p − pc|−σ diverges and the tail of the
distribution behaves as a power law.

The structure of this paper is as follows: In Sect. 2 we discuss general results
applicable to generalized random graphs with an arbitrary degree distribution.
In Sect. 3 we discuss networks having a scale-free degree distribution, which
will be the main concern of this paper. In Sect. 4 we discuss the tomography of
scale-free networks, that is, their partition into layers surrounding the maximally
connected node at different distances. Section 5 presents the model of random
breakdown in scale-free networks and analytical and numerical results for this
kind of failure. Section 6 offers a similar approach for an intentional attack on
the most highly connected nodes. Section 7 presents an analytical derivation of
the critical exponents for the percolation transition on scale-free networks, and
finally Sect. 8 presents conclusions and prospects.

2 General Results

2.1 Condition for a Spanning Cluster

For a graph having degree distribution P (k) to have a spanning cluster, a site
which is reached by following a link from the giant cluster must have at least
one other link in average to allow the cluster to exist4. For this to happen the
average degree of a site must be at least 2 (one incoming and one outgoing link)
given that the site i is connected to j:

〈ki|i↔ j〉 =
∑

ki

kiP (ki|i↔ j) = 2. (2)

4 If we dilute the graph up to near pc, the remaining structure resembles a tree, or a
branching process. One can show that a branching process with an average branching
factor that is less than 1 will die out with probability 1 after a finite number of steps
[18].
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Using Bayes rule we get

P (ki|i↔ j) = P (ki, i↔ j)/P (i↔ j) = P (i↔ j|ki)P (ki)/P (i↔ j), (3)

where P (ki, i ↔ j) is the joint probability that node i has degree ki and that
it is connected to node j. For randomly connected networks (neglecting loops)
P (i ↔ j) = 〈k〉/(N − 1) and P (i ↔ j|ki) = ki/(N − 1), where N is the total
number of nodes in the network. Using the above criteria (2) reduces to [19,2]:

κ ≡ 〈k2〉
〈k〉 = 2, (4)

at the critical point. A spanning cluster exists for graphs with κ > 2, while
graphs with κ < 2 contain only small clusters whose size is not proportional to
that of the entire network. This criterion was derived earlier by Molloy and Reed
[19] using somewhat different arguments.

The neglecting of loops can be justified below the threshold since the prob-
ability for a bond to form a loop in an s-node cluster is proportional to (s/N)2

(i.e., proportional to the probability of choosing two sites in that cluster). Cal-
culating the fraction of loops Ploop in the system yields:

Ploop ∝
∑

i

s2i
N2 <

∑

i

siS

N2 =
S

N
, (5)

where the sum is over all clusters in the system and si is the size of the ith cluster.
Therefore, the fraction of loops in the system is less than or proportional to S/N ,
where S is the size of the largest cluster. Below the critical threshold there is no
spanning cluster in the system and therefore the fraction of loops is negligible.
Hence, until κ = 2 loops can be neglected. At the threshold the structure of
the spanning cluster is almost a tree. Above the threshold loops can no longer
be neglected, but since this only happens when a spanning cluster exists the
criterion in (4) is valid as a criterion for finding the critical point. A derivation
of the exact conditions under which (4) is valid can be found in [19].

2.2 Critical Threshold for Percolation

The above reasoning can be applied to the problem of percolation on a general-
ized random network. If we randomly remove a fraction p of the sites (or bonds),
the degree distribution of the remaining sites will change. For instance, sites with
initial degree k0 will have, after the random removal of nodes, a different number
a connections, depending on the number of removed neighbors. The new number
of connections will be binomially distributed. If we begin with a distribution of
degrees P0(k0), the new distribution of degrees of the network will be:

P (k) =
∞∑

k0=k

P0(k0)
(
k0
k

)
(1− p)kpk0−k. (6)
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Calculating the first moment for this distribution, given 〈k0〉 and 〈k2
0〉 for the

original distribution leads to:

〈k〉 =
∞∑

k=0

P (k)k = (1− p)〈k0〉. (7)

In the same manner we can calculate the second moment:

〈k2〉 =
∞∑

k=0

P (k)k2 = (1− p)2〈k2
0〉+ p(1− p)〈k0〉. (8)

Both quantities can be substituted into (4) to find the criterion for criticality.
This yields:

κ ≡ 〈k2〉
〈k〉 =

(1− p)2〈k2
0〉+ p(1− p)〈k0〉

(1− p)〈k0〉 = 2. (9)

Reorganizing (9), one gets the critical threshold for percolation [2]:

1− pc =
1

κ0 − 1
, (10)

where κ0 ≡ 〈k2
0〉/〈k0〉 is calculated using the original distribution, before the

removal of sites.
Equations (4) and (10) are valid for a wide range of generalized random

graphs and distributions. For example for a Cayley tree – a graph with a fixed
degree z and no loops – the criterion from (10) can be used. This yields the
critical concentration qc = 1 − pc = 1/(z − 1), which is well known [16,17].
Another example is a random Erdös-Rényi (ER) graph. In those graphs edges
are distributed randomly and the resulting degree distribution is Poissonian [20].
Applying the criterion from (4) to a Poisson distribution yields:

κ ≡ 〈k2〉
〈k〉 =

〈k〉2 + 〈k〉
〈k〉 = 2, (11)

which reduces to 〈k〉 = 1 as known for ER graphs [20].

2.3 Generating Functions

A general method for studying the size of the infinite cluster and the residual
network for a graph with an arbitrary degree distribution was first developed
by Molloy and Reed [21]. They suggested viewing the infinite cluster as being
explored and used differential equations for the number of un-exposed links and
unvisited sites to find the size of the infinite cluster and the degree distribution
of the residual graph (the finite clusters).

An alternative and very powerful derivation was given by Newman, Strogatz
and Watts [5]. They have used the generating functions method to study the
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. . .

Fig. 1. An illustration of equations 14 and 15 for the probability to reach a branch of
a given size by following a link. This is the sum of the probabilities to reach a vertex
with zero outgoing links, of reaching a vertex with a single outgoing link connected to
another such branch, of reaching a vertex with two outgoing links connected to two
such branches etc. After Newman et al. [5].

size of the infinite cluster as well as other quantities (such as the diameter and
cluster size distribution). They have also applied this method to other types of
graphs (directed and bipartite). Here we closely follow their derivation in order
to find the size of the infinite cluster and the critical exponents.

In [5] a generating function is built for the degree distribution:

G0(x) =
∞∑

k=0

P (k)xk. (12)

If we start from a randomly chosen site and follow each of its links to its near-
est neighbors, the sites arrived will have a degree distribution kP (k)/〈k〉 [19,
2,5,3]. The generating function describing the probability for k outgoing links
(excluding the link we arrived along) will be:

G1(x) =
∑
kP (k)xk−1
∑
kP (k)

=
d

dx
G0(x)/〈k〉 . (13)

Let H1(x) be the generating function for the probability of reaching a branch of
a given size by following a link5. If we denote the coefficients of G1(x) by qk (i.e.
the probability for k outgoing links from a site reached by following a random
link), then H1(x) must satisfy the self-consistent equation (see Fig. 1):

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + · · · . (14)

Which can be written as:

H1(x) = xG1(H1(x)) . (15)

If we start from a random site, we have one such branch at the end of each
neighboring link. Since G0(x) is the generating function for the degree of the
site, the generating function for the probability of a site to belong to an n-site
cluster is:
5 We assume that the finite clusters have almost no loops and are therefore tree-like

structures.
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H0(x) = xG0(H1(x)) . (16)

Below the transition, H0(1) = 1, since this is the probability to belong to a
cluster of any size. However, above the transition this probability is no longer
normalized since this does not include the infinite cluster. Then, the relative size
of the giant cluster is P∞ = 1 − H0(1), since H0 contains only the finite-size
clusters. It follows that:

P∞ = 1−
∞∑

k=0

P (k)uk , (17)

where u ≡ H1(1) is the smallest positive root of:

〈k〉u =
∞∑

k=0

kP (k)uk−1 . (18)

This equation can be solved numerically and the solution can be substituted into
(17) to calculate the size of the infinite cluster in a graph with a given degree
distribution.

3 Scale-Free Networks

3.1 Description

Our main concern in this paper will be with the behavior of scale-free networks.
Scale-Free networks are networks whose degree distribution (i.e. fraction of sites
with k connections) behaves as:

P (k) ∝ k−λ, m ≤ k ≤ K, (19)

where λ is the exponent, m is the lower cutoff, and K is the upper cutoff. There
are no sites with degree below m and above K. For finite networks the upper
cutoff K(N) arises naturally since the fraction of high-degree sites decays with
k. An estimate of this cutoff can be found by the assumption that the tail of the
distribution above K is of the order of one site [2]:

∞∑

k=K

P (k) ∼
∫ ∞

K

P (k)dk =
1
N
. (20)

The estimate obtained this way gives:

K ≈ mN1/(λ−1). (21)

This estimate allows the derivation of finite size effects in the network and allows
calculations of moments of the distribution in (19), that would otherwise diverge.
Newman et al. [5] use an exponential cutoff rather than a sharp one, but the
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effect on the results is minor. Another difference between the distribution used
by us and by Newman et al. [5] is given in Sect. 3.2.

The importance of scale-free networks lies in the fact that this distribution
occurs in many natural and man-made networks [6,5]. An example of a scale-free
network is the physical Internet structure, that is the router to router (and end-
units) connectivity. This structure was studied by Faloutsos et al.[6]. They have
found that the inter-router network can be well approximated by a non-directed
scale-free network with λ ≈ 2.5. The size of the Internet today is about 107 sites,
making it a fairly large network.

A few results about the structure of scale-free networks have also been derived
by Aiello et al. [22]. The size of the infinite cluster was calculated, and it was
found that for λ ≤ 2 the infinite cluster is of the order of the size of the entire
graph (i.e. P∞ = 1 − o(1), where o(1) is a function of the network size, N ,
decaying to 0 as N →∞). For λ > λc = 3.478... there is no infinite cluster at all
(since we use a somewhat different distribution, see below (23) and (24), we get
λc ≈ 4). For λ < λc the second largest cluster is of order lnN . For lower cutoff
m ≥ 2 a spanning cluster exists for every λ.

The average distance between sites is also different in scale free networks from
its value for normal random graphs. While for ER graphs the average distance
between sites behaves as d ∼ lnN [20], for scale free graphs with 2 < λ < 3 the
distance behaves as d ∼ ln lnN [23,24], and for λ = 3 as d ∼ lnN/ ln lnN [25].
The reason for this short distance is the small core, containing most high degree
sites, which has a very small diameter. For λ > 3 the normal behavior d ∼ lnN
is recovered.

3.2 Simulation

To simulate general networks we have used the following algorithm:

1. For each site choose a degree from the required distribution.
2. Create a list where each site is repeated as many times as the chosen degree.
3. Randomly choose pairs from the list and connect the chosen sites (by adding

each node to the list of neighbors of the other site). Remove the chosen pair
from the list (by replacing them with the last two entries in the list).

Double and self-edges are ignored, and if the number of entries in the list is
odd (overall odd number of connections) one entry can also be discarded. This
has a minor influence on the degree distribution if the network is large. The
justification of using this algorithm for simulation and analysis as an algorithm
generating the probability space of generalized random graphs can be found in
[19] by Molloy and Reed6.

To generate degrees from a scale-free distribution we generate a random
number, u, between 0 and 1 from a uniform distribution, and then generate a
new number k using the formula:
6 Actually the model that came to be known as the Molloy-Reed Model was first

introduced by Bollobás [26].
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k =
m

u1/(λ−1) . (22)

This generates a random real number greater than m, with a distribution of
P (k) ∝ k−λ. To prevent the appearance of overflows, u can be chosen such that
it is large enough to yield numbers smaller than N−1 (since this is the maximum
degree per site). If an upper cutoff is required a new random number is drawn
whenever k is too large. After k is chosen, the closest integer is taken as the
degree of the site. The resulting degree distribution is thus:

P (k′) =
∫ k′+1/2

k′−1/2
ck−λdk, (23)

where c is the normalization factor, except for the lower cutoff whose probability
is given by:

P (m) =
∫ m+1/2

m

ck−λdk. (24)

This is in contrast to the probability chosen by [22] and [5,3], who use a discrete
scale-free distribution. The main difference is in the fraction of sites of degree m
(usually m = 1). Due to (24) the fraction of low degree sites in our derivation is
lower and therefore the networks generated this way are more robust than the
ones generated using the discrete distribution. However, the behavior of both
distributions in the tail is approximately the same, and therefore the qualitative
behavior of all phenomena influenced by the scale-free nature of the distribution
should be the same.

The complexity of the algorithm depends upon the number of links in the
network and therefore is of order O(N〈k〉), which is fast enough to execute for
large graphs. The space needed is again of order O(N〈k〉). Those limits allow
the creation of networks of about 107 sites.

An alternative method for the study of such networks is a variation of the
Leath algorithm. In this method a table is created with number of sites of each
degree. The Molloy-Reed construction [19] is then used to build the clusters.

3.3 Maximum Degree

In (21) we suggest that the upper cutoff of a scale free network scales as K =
N1/(λ−1). However, for the spatially embedded graphs [27], we find that no graph
with λ < 3 can be embedded in a lattice without sacrificing the natural cutoff.
That is, the cutoff is limited to k ≈ √

N . This holds true for every d. Thus,
we expect this to hold true even in the d → ∞ case. Similar results are indeed
obtained for mean field (i.e. non-embedded) graphs [28]. On the other hand,
Warren et al. [29] find the natural cutoff even for graphs embedded in d = 2
lattices.

These differences may be explained by the fact that the cutoff depends on
the ensemble from which the graphs are chosen. If the ensemble is defined as all
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graphs with the exact given scale free degree distribution and no self loops (loops
connecting a site to itself) and no double edges (two edges or more connecting
the same set of sites) then the upper cutoff can not be larger than

√
N , while if

multigraphs are allowed (i.e. including self loops and double edges) the natural
upper cutoff is achieved. The following two facts support this intuition:

Almost all graphs with the natural cutoff are multigraphs: Consider
a graph with a site having degree K  √

N . Since for λ > 2 the total number
of links is of order N the number of self loops of the HUB is proportional to
K2/cN  1. Similar results apply for double edges between two such sites.

Removing the double edges and self loops does not affect the be-
havior of the tail of the distribution: Suppose a site has degree K  √

N .
The number of degree 1 sites is of order N . Therefore, the number of connections
from this site to sites of degree 1 is proportional to its degree K. Since edges
leading to degree 1 sites are neither self loops nor double edges, the upper cutoff
is at least proportional to the natural cutoff. In reality, the deviation from the
exact degree distribution is quite small.

From the above one can conclude that starting from a scale free degree dis-
tribution a multigraph can be constructed, with the given degree sequence. Con-
verting it into a simple graph will change the degree distribution, while keeping
the power law form of the tail. However, if one is forced to keep the exact degree
sequence while prohibiting self-loops and double edges, the upper cutoff may
change.

4 Tomography of Scale Free Networks

In this section we study the network structure by describing the statistical be-
havior of layers surrounding the maximal connected node. First, we describe the
process of generating the network, and define our terminology. Then, we analyze
the degree distribution at each layer surrounding the maximally connected node.
The results presented here are based on [14]. Similar analysis was done by [30].

4.1 Description

We base our construction on the Molloy-Reed model [21], also described in
Sect. 3. The construction process tries to gradually expose the network, following
the method introduced in [23,31], and is forcing a hierarchy on the Molloy-Reed
model, thus enabling us to define layers in the graph.

We start by setting the number of nodes in the network, N. We then choose
the nodes degrees according to the scale-free distribution function P (k) = ck−λ,
where c ≈ (λ− 1)mλ−1 is the normalizing constant and k is in the range [m,K],
for some chosen minimal degree m and the natural cutoff K = mN1/(λ−1) of the
distribution [2,32].

At this stage each node in the network has a given number of outgoing links,
which we term open connections, according to its chosen degree. Let us define V
as the set of N chosen nodes, C as the set of unconnected outgoing links from
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the nodes in V , and E as the set of edges in the graph. Using these definitions,
the set of links in E is empty at this point, while the set of outgoing open links
in C contains all unconnected outgoing links in the graph. In the Molloy-Reed
construction described in Sect. 3, the links in C are randomly matched, such
that at the end of the process, C is empty, and E contains all the matched links
< u, v >, u, v ∈ V .

Instead, here we proceed as follows: we start from the maximal degree node,
which has a degree K, and connect it randomly to K available open connections,
thus removing these open connections from C (see Fig. 2(a)). We have now
exposed the first layer (or shell) of nodes, indexed as l = 1. We now continue to
fill out the second layer l = 2 in the same way: We connect all open connections
emerging from nodes in layer 1 to randomly chosen open connections. These
open connections may be chosen from nodes of layer 1 (thus creating a loop)
or from other links in C. We continue until all open connections emerging from
layer 1 have been connected, thus filling layer l = 2 (see Fig. 2(b)). Generally,
to form layer l + 1 from an arbitrary layer l, we randomly connect all open
connections emerging from l to either other open connections emerging from l
or chosen from the other links in C (see Fig. 2(c)). Note, that when we have
formed layer l+ 1, layer l has no more open connections. The process continues
until the set of open connections, C, is empty.

4.2 Theory

We proceed now to evaluate the probability for nodes with degree k to reside
outside the first l layers, denoted by Pl(k).

The number of open connections outside layer l, is given by:

Tl = N
∑

k

kPl(k) (25)

Thus, we can define the probability that a detached node with degree k will
be connected to an open connection emerging from layer l by k

χl+Tl
, where χl is

the number of open connections emerging from layer l (see Fig. 2(b)).
Therefore, the conditional probability for a node with degree k to be also

outside layer l+ 1, given that it is outside layer l, is the probability that it does
not connect to any of the χl open connection emerging from layer l, that is:

P (k, l + 1|l) =
[
1− k

χl + Tl

]χl

≈ exp

(
− k

1 + Tl

χl

)
, (26)

for large enough values of χl.
Thus, the probability that a node of degree k will be outside layer l + 1 is:

Pl+1(k) = Pl(k)P (k, l + 1|l) = Pl(k) exp

(
− k

1 + Tl

χl

)
(27)
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(a)

= χ
0

Κ 0

Τ0

k

χ l

(b)
Τl

Sl+1

(c)
Τl+1

χ l

, χ l+1

Fig. 2. Illustration of the exposure process. The large circles denote exposed layers of
the giant component, while the small circles denote individual sites. The sites outside
the circles have not been reached yet. (a) We begin with the highest degree node and
fill out layer 1. (b) In the exposure of layer l + 1 any open connection emerging from
layer l may connect to any open node (Tl connections) or loop back into layer l (χl

connections). (c) The number of connections emerging from layer l + 1 is the difference
between Tl and Tl+1 after reducing the incoming connections Sl+1 from layer l.
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Thus we derive the exponential cutoff:

Pl(k) = P (k) exp
(
− k

Kl

)
, (28)

where:

1
Kl+1

=
1
Kl

+
1

1 + Tl

χl

, (29)

gives the evolution of the cutoff with l.7

Now let us find the behavior of χl and Sl, where Sl+1 is the number of links
incoming to the l + 1 layer (and approximately8 equals Nl+1, the number of
nodes in the l + 1 layer). The number of incoming connections to layer l + 1
equals the number of connections emerging from layer l, minus the number of
connections looping back into layer l. The probability for a link to loop back
into layer l is:

P (loop|l) =
χl

χl + Tl
(34)

7 The exponential cutoff may be derived also using the following “mean field” approx-
imation: Each node is treated independently, where the interaction between nodes
is inserted through the expected number of incoming connections. At each node, the
process is treated as equivalent to randomly distributing χl independent points on
a line of length χl + Tl and counting the resultant number of points inside a small
interval of length k. Thus, the number of incoming connections kin from layer l to
a node with k open connections is distributed according to a Poisson distribution
with:

〈kin〉 =
k

χl + Tl
χl , (30)

and:

Pl+1(kin|k) = e−〈kin〉 〈kin〉kin

kin!
. (31)

The probability for a node with k open connections not to be connected to layer
l, i.e. to be outside layer l + 1 also, is:

P (k, l + 1|l) = Pl+1(kin = 0|k) = e−〈kin〉 = exp

(
− k

1 + Tl
χl

)
(32)

Thus the total probability to find a node of degree k outside layer l + 1 is:

Pl+1(k) = Pl(k)P (k, l + 1|l) = Pl(k) exp

(
− k

1 + Tl
χl

)
, (33)

and one obtains the exponential cutoff.
8 This holds true assuming that almost no site in layer l + 1 is reached by two con-

nections from layer l. This is justified in the case where m = 1, and also for the first
layers in case of m > 1.
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and therefore:

Sl+1 = χl

(
1− χl

χl + Tl

)
. (35)

The number of connections emerging from all the nodes in layer l + 1 is
Tl − Tl+1. This is the sum of the number of incoming connections from layer l
into layer l+ 1, which is equal to Sl+1, and the number of outgoing connections
χl+1. Therefore:

χl+1 = Tl − Tl+1 − Sl+1 (36)

At this point we have the following relations: Tl+1(Kl+1) Equations (25) and
(28), Sl+1(χl, Tl) (35), Kl+1(Kl, χl, Tl) (29), and χl+1(Tl, Tl+1, Sl+1) (36). These
relations may be solved numerically9. Note that approximate analytical results
for the limit N →∞ can be found in [23,31,24]10.

4.3 Simulation

Figure 3 shows results from simulations (symbols) for the number of nodes on
layer l, which can be seen to be in agreement with the analytical curves of Sl
(lines). We can see that starting from a given layer l = L the number of nodes
decays exponentially. We believe that the layer index L is related to the radius
of the graph [23,31]. It can be seen that Sl is a good approximation for the
number of nodes at layer l. This is true in cases when only a small fraction of
sites in each layer l have more than one incoming connection. An example for
this case is when m = 1 so that most of the sites in the network have only
one connection. Figure 4 shows results for Pl(k) with similar agreement. Note
the exponential cutoff which becomes stronger with l (i.e. Kl is a monotonically
decreasing function of l).

It is important to note that the simulation results give the probability dis-
tribution for the giant percolation cluster, while the analytical reconstruction
gives the probability distribution for the whole graph. This may explain the dif-
ference in the probability distributions for lower degrees: many low degree nodes
are not connected to the giant percolation cluster and therefore the probability
distribution derived from the simulation is smaller for low k.

Similar behavior was found in real Internet maps and multicast trees [14].
Deviations from theory may be attributed to correlations in node degrees [33,
30] and hierarchical structures [34], which were observed in the Internet. In
9 We begin with K0 = K (the natural cutoff of the network), χ0 = K0 = K, and

P0(k) = ck−λ.
10 An approximate analytical expression for the upper cutoff was found to be [23]:

Kl ∼ A
(λ−2)l−1−1

3−λ N
(λ−2)l

λ−1 . (37)

where A = 〈k〉mλ−2/(3 − λ) = (λ−1)m
(λ−2)(3−λ) .
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Fig. 3. Approximate number of nodes (Sl) vs. layer index l for a network with N = 106

nodes, λ = 2.85, and m = 1. Symbols represent simulation results while solid lines are
a numerical solution for the derived recursive relations. Bottom: from the semi-log plot
we see that there is an exponential decay of Sl for layers l > L starting from a given
layer L which we believe is related to the radius of the graph.
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Fig. 4. Log-log plot of Pl(k) for different layers l = 0, 1, 2, ... (from top to bottom), for
a network with N = 106 nodes, λ = 2.85, and m = 1. Symbols represent simulation
results while solid lines are a numerical solution for the derived recursive relations.
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another study, Brunet et al. [30] analyzed the layer structure for the Albert-
Barabási model [1] and its randomized variations [35]. They found that in the
Albert-Barabási model there are more nodes in the first layers due to dissortative
mixing [33].

4.4 Bounds and Implications

The layer structure of the network has implications on several important topics.
Since messages in a communication network travel between neighboring nodes
the inter-node distances are important in understanding network performance
and message routing. Another important subject is searching for nodes in a
network. In [36], an efficient method for searching via the network HUBs is
presented. This method is based on going up the degree sequence, from each
site to a higher degree site, until the highest degree site is reached. Then, the
search continues down the degree sequence to lower and lower degree sites. This
method allows for a search much more efficient than a random one, as shown
in [36]. However, as we show below, no search strategy based on local information
can search a finite fraction of the network in less than O(N) steps (with possible
logarithmic corrections).

Some limits on the efficiency of such techniques can be obtained by using
bounds on the structure of scale free networks as in [23]. These bounds follow
from the scale free degree sequence of the network, and are independent of the
exact model for network generation. Therefore, they apply to every network
with a scale-free degree sequence.

If we consider the fraction, A, of the most most highly connected sites,
their fraction of neighbors (relative to the network size), n1(A), can not exceed∫K
f
ck1−λdk ≈ f2−λmλ−1(λ − 1)/(λ − 2), where f satisfies N

∫K
f
ck−λdk = A.

Hence, f = mA1/(λ−1), and n1(A) ≤ mA(λ−2)/(λ−1)(λ−1)/(λ−2). Similarly, the
number of second neighbors of these sites can not exceed n2(A) ≤ n1(n1(A)) ≤(
m(λ − 1)/(λ − 2)

)(2λ−3)/(λ−1)
A(λ−2)2/(λ−1)2 . One can continue for the third

nearest neighbors and so on.
Since the number of lth nearest neighbors of a group of AN sites behaves as

NA(λ−2
λ−1 )

l

it follows that for A ∼ N−ε for any ε no finite number of layers can
contain O(N) sites in the limit N → ∞. One can therefore conclude that the
average distance between sites in a scale-free networks can not be a constant,
and also that no searching of O(N) sites using less than O(N) steps is
possible. The second conclusion is true, of course, only if no information other
than lth nearest neighbors is allowed, and does not apply to methods such as
the one suggested in [37], which can search in less than O(N) step owing to the
knowledge of some distance metric.
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5 Random Breakdown

5.1 Description

Albert et al.[1] suggested to model the Internet as a scale-free network (in their
original model λ ≈ 3). They suggested a scenario in which nodes in the network
fail randomly (due to random error or an external cause like power-failures etc.).
To model this scenario, they suggested random removal of sites from the network,
after which they calculated the size of the largest remaining cluster. They have
compared the results of applying this process to a scale-free network to the same
model on a random Erdös-Rényi (ER) graph. They found numerically that scale-
free networks with λ = 3 are much more resilient to this kind of failure than
ER graphs. In a previous paper [2] we have studied this problem analytically
and numerically for the Molloy-Reed model [21]11. The results are summarized
below.

5.2 Theory

In the calculation of the threshold for random breakdown, the key parameter,
according to (10), is the ratio second- to first-moment, κ0, which we compute
by approximating the distribution (19) to a continuum. (This approximation
becomes exact for 1 � m � K, and it preserves the essential features of the
transition even for small m. Furthermore, for our continuous distribution this
approximation is fairly accurate for all values of the cutoff):

κ0 =
(

2− λ
3− λ

)
K3−λ −m3−λ

K2−λ −m2−λ . (38)

When K  m, this may be approximated as:

κ0 →
∣∣∣∣
2− λ
3− λ

∣∣∣∣×






m, if λ > 3;
mλ−2K3−λ, if 2 < λ < 3;
K, if 1 < λ < 2.

(39)

We see that for λ > 3 the ratio κ0 is finite and there is a percolation transition
at 1 − pc ≈

(
λ−2
λ−3m − 1

)−1: for p > pc the spanning cluster is fragmented and
the network is destroyed. However, for λ < 3 the ratio κ0 diverges with K and
so pc → 1 when K → ∞ (or N → ∞). The percolation transition does not
take place: a spanning cluster exists for arbitrarily large fractions of breakdown,
p < 1. In finite systems a transition is always observed, though for λ < 3 the
transition threshold is exceedingly high. For the case of the Internet (λ ≈ 5/2),
we have κ0 ≈ K1/2 ≈ N1/3. Considering the enormous size of the Internet,
N > 106, one needs to remove over 99% of the nodes before the spanning cluster
collapses. For λ > 4 calculation of κ shows that it is lower than 2 even before
11 See Sect. 3.
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the breakdown occurs. For λ > 4 and m = 1 the network will consist of only
finite clusters and no spanning cluster exists (This is reminiscent of the result for
λ > 3.478... found in [22], where the different threshold stems from the different
distribution taken). For m ≥ 2, a spanning cluster exists for every λ.

The size of the spanning cluster can also be measured using the methods
suggested in [5]. The distribution (6) can be substituted into (12) and the cal-
culation of the other generating functions can be done using this distribution,
giving the size of the spanning cluster relative to the undisturbed network. An
alternative method [3] is to build a new generating function, taking the fraction
of removed sites into account:

G0(x) =
∞∑

k=0

P (k)q(k)xk, (40)

where q(k) = 1− p(k) is the probability that a site of degree k is not removed.
This equation replaces (12). For random breakdown q(k) = 1− p is independent
of k. The size of the infinite cluster is then given by:

P∞ = G0(1)−G0(u), (41)

where u is the smallest positive solution of:

u = 1−G1(1) +G1(u). (42)

5.3 Simulation

To simulate the process of random breakdown of a fraction p of the sites, pN
sites are chosen at random. Those sites are removed and all bonds connected to
them are also removed. The links are followed to remove all connections to those
sites from the other end of the link.

After the removal of the sites, the size of the spanning cluster (if exists) and
the finite clusters is measured. The measurement is performed using breadth first
search (BFS) from each site which hasn’t been marked as probed. This method
uncovers the graph cluster by cluster, and can also be used to find the distance
(i.e. the shortest path) between a site on the cluster and all the other sites on
that cluster. Numerical results for the largest cluster in random breakdown can
be seen in Fig. 5. Numerical and analytical results of pc, for different values of
λ and m, are shown in Fig. 6.

6 Intentional Attack

6.1 Description

Another model suggested in [1] is that of intentional attack on the most highly
connected nodes in the network. In this model an attacker (e.g. computer hackers
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Fig. 5. Percolation transition for networks with power-law degree distribution. Plotted
is the fraction of nodes (relative to the number of remaining nodes) that remain in the
spanning cluster after breakdown of a fraction p of all nodes, P∞(p)/(1 − p), as a
function of p, for λ = 3.5(�) and λ = 2.5 (other symbols), as obtained from computer
simulations of up to N = 106. In the former case, it can be seen that for p > pc ≈ 0.5
the spanning cluster disintegrates and the network becomes fragmented. However, for
λ = 2.5 (the case of the Internet), the spanning cluster persists up to nearly 100%
breakdown. The different curves for K = 100 (◦), 400 (�), and 2000 (�) illustrate
the finite size-effect: the transition exists only for finite networks, while the critical
threshold pc approaches 100% as the networks grow in size.

trying to cause damage to the network) leashes by some means an intentional
attack on the most highly connected sites in the network, causing breakdown of
those sites. An attack such as this will expectedly cause more extensive damage
than a random attack, and as will be shown below, can cause even networks
resilient to random breakdown to collapse [3,4].

6.2 Theory

Consider now intentional attack, or sabotage [1], whereby a fraction p of the
sites with the highest degree is removed. (The links emanating from the sites are
removed as well.) This has the following effect: (a) the cutoff degree K reduces
to some new value, K̃ < K, and (b) the degree distribution of the remaining
sites is no longer the original distribution, but is changed, because of the removal
of many of their links. The upper cutoff K before the attack may be estimated
from (21). Similarly, the new cutoff K̃, after the attack, can be estimated from

K∑

k=K̃

P (k) =
∞∑

k=K̃

P (k)− 1
N

= p . (43)
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Fig. 6. The Percolation threshold pc for different values of λ and m, for random
breakdown of nodes. Circles represent simulation results for N = 5 · 105 nodes, while
solid lines give analytical results. The deviation from pc = 1 for λ ≤ 3 is due to finite
size effects (after K. Erez [38]).

If the size of the system is large, N  1/p, the original cutoff K may be
safely ignored. We can then obtain K̃ approximately by replacing the sum with
an integral:

K̃ = mp1/(1−λ) . (44)

We estimate the impact of the attack on the distribution of the remaining
sites as follows. The removal of a fraction p of the sites with the highest degree
results in a random removal of links from the remaining sites — links that had
connected the removed sites with the remaining sites. The probability p̃ of a link
leading to a deleted site equals the ratio of the number of links belonging to
deleted sites to the total number of links:

p̃ =
K∑

k=K̃

kP (k)
〈k0〉 , (45)

where 〈k0〉 is the initial average degree. With the usual continuous approxima-
tion, and neglecting K, this yields

p̃ =
(
K̃

m

)2−λ
= p(2−λ)/(1−λ) , (46)

for λ > 2. For λ = 2, p̃ → 1, since just a few nodes of very high degree control
the entire connectedness of the system. Indeed, consider a finite system of N
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sites and λ = 2. The upper cutoff K ≈ N must then be taken into account, and
approximating (45) by an integral yields p̃ = ln(Np/m). That is, for λ = 2, very
small values of p are needed to destroy an arbitrarily large fraction of the links
as N →∞.

With the above results we can compute the effect of intentional attack, using
the theory previously developed for random removal of sites [2]. Essentially, the
network after attack is equivalent to a scale-free network with cutoff K̃, that
has undergone random removal of a fraction p̃ of its sites. This can be seen as
the result of two processes: (a) Removal of the highest degree sites reduces the
upper cutoff. Since this effect changes the degree distribution, κ0 needs to be
recalculated accordingly. (b) Removal of the links leading to the removed sites.
The probability of removing a link is p̃ — the probability of a randomly chosen
link to lead to one of the removed sites — and all links have the same probability
of being deleted. Since this effect has the influence on the probability distribution
described in (6), the result in (10) can be used, with p̃ replacing p. (Notice that
for random site deletion the probability of a link leading to a deleted site is
identical to the fraction of deleted sites.)

Although the number of nodes removed in intentional attack is different than
in the random breakdown model, this affects the size of the spanning cluster (see
below) but not the critical point. This is because the transition point is defined
as the point where the spanning cluster becomes a finite fraction of the whole
network. A finite fraction of the remaining nodes is also a finite fraction of the
original network, so the difference has no effect on pc.

We therefore use (10) and (38), but with p̃ = (K̃/m)2−λ and K̃ replacing pc
and K. This yields the equation:

(K̃/m)2−λ − 2 =
2− λ
3− λm[(K̃/m)3−λ − 1] , (47)

which can be solved numerically to obtain K̃(m,λ), and then pc(m,λ) can be
retrieved from (44). In Fig. 7 we plot pc — the critical fraction of sites needed to
be removed in the targeted attack strategy to disrupt the network — computed
in this fashion, and compared to results from numerical simulations. A phase
transition exists (at a finite and small pc) for all λ > 2. The decline in pc
for large λ is explained from the fact that as λ increases the spanning cluster
becomes smaller in size, even before attack. (Furthermore, for m < 2 the original
network is disconnected for some large enough λ.) The decline in pc as λ → 2
results from the critically high degree of just a few sites: their removal disrupts
the whole network. This was already argued in [1]. We note that for infinite
systems pc → 0 as λ→ 2. The critical fraction pc is rather sensitive to the lower
degree cutoff m. As shown in Fig. 7, for larger m the networks are more robust,
though they still undergo a transition at a finite pc.

To calculate P∞(p) one can use the generating function method in conjunc-
tion with p(k) = Θ(K̃ − k) [3] (to be more exact, p(k) = Θ(K̃ − k) + Aδk,K̃ ,
where A is chosen such that

∑∞
k=0 p(k) = 1 − p). An alternative method is to

use the generating functions in conjunction with the new distribution after the
attack.
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Fig. 7. Critical probability pc as a function of λ, for networks of size N = 5 ·105 under
intentional attack (symbols) . Solid lines represent the analytical solution, obtained
from (43–47), after K. Erez [38].

6.3 Simulation

To simulate the intentional attack the same method as in random removal of
sites is applied. The only difference is that the removed sites are not selected
randomly, but chosen as the highest degree nodes. Sorting the sites would take
O(N lnN) operations, however since no site has degree greater than N an array
of lists of sites for each degree can be produced, and the sites can be removed
starting from the highest degree downwards. This only requires O(N) operations,
and therefore the entire execution of the program takes only order of O(N)
operations. Analytical and numerical result are shown in Fig. 8.

A somewhat different result would be achieved if the list is updated every
time a site is deleted, since this influences the degree of the other sites. However,
simulations show that this change has a small influence on the results, and the
above analysis (in the previous section) is based on the static picture. Therefore,
this is the method used to obtain the results given here.

7 Critical Exponents

7.1 Introduction

In the study of percolation [17,16] and many other critical phenomena it is
very common to study the behavior of the system near the critical point. Many
parameters of the system (such as the order parameter – in our case P∞) display
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Fig. 8. Fraction of sites belonging to the spanning cluster, P∞, as a function of the
fraction of removed sites, p, for networks with λ = 2.5 (circles), λ = 2.8 (squares), and
λ = 3.3 (diamonds). Lines represent the analytical result from (17) and (18). Both the
simulation and analysis are for system size N = 500, 000.

a power-law behavior near the critical point. That is, many properties of the
system behave as (p− pc)ω near the transition point with a critical exponent ω.
At the transition point itself, some properties also follow a power law in another
parameter.

It is well known [16,17] that many of the critical exponents are universal.
That is, the value of the exponent is independent of the exact microscopic setup,
and depends only on the large scale topological properties of the problem (e.g.
the embedding dimension). In many systems there is an upper critical dimen-
sion above which the behavior of the critical exponents is independent of the
dimension and all obtain their “mean-field” values. In the case of percolation
the critical dimension is dc = 6 [16,17].

In the following we calculate the critical exponents for percolation in scale free
networks and show that those networks, despite their mean-field nature, present
a new universality class [39,31] (in fact, a new set of universality classes).

7.2 Infinite Cluster Size

In [3,5] the generating functions G0(x) and G1(x) are built for various distribu-
tions [(12) and (13)]. Let H1(x) be the generating function for the probability
of reaching a branch of a given size by following a link. After a dilution of a
fraction p of the sites (the remaining concentration is q = 1− p), H1(x) satisfies
the self-consistent equation
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H1(x) = 1− q + qxG1(H1(x)) . (48)

Since G0(x) is the generating function for the degree of a site, the generating
function for the probability of a site to belong to an n-site cluster is

H0(x) = 1− q + qxG0(H1(x)) . (49)

H0(1) is the probability that a site belongs to a cluster of any finite size. Thus,
below the percolation transition H0(1) = 1, while above the transition there is
a finite probability that a site belongs to the infinite spanning cluster: P∞ =
1−H0(1). It follows that

P∞(q) = q

(
1−

∞∑

k=0

P (k)uk
)
, (50)

where u ≡ H1(1) is the smallest positive root of

u = 1− q +
q

〈k〉
∞∑

k=0

kP (k)uk−1 . (51)

This equation can be solved numerically and the solution may be substituted
into (50), yielding the size of the spanning cluster in a network of arbitrary
degree distribution, at dilution q [3].

We now compute the order parameter critical exponent β. Near criticality the
probability of belonging to the spanning cluster behaves as P∞ ∼ (q− qc)β . For
infinite-dimensional systems (such as a Cayley tree) it is known that β = 1 [17,
16,40]. This regular mean-field result is not always valid, however, for scale-free
networks. Equation (50) has no special behavior at q = qc; the singular behavior
comes from u. Also, at criticality P∞ = 0 and (50) imply that u = 1. We therefore
examine (51) for u = 1− ε and q = qc + δ:

1− ε = 1− qc − δ +
(qc + δ)
〈k〉

∞∑

k=0

kP (k)(1− ε)k−1. (52)

The sum in (52) has the asymptotic form

∞∑

k=0

kP (k)(1− ε)k−1 ∼

〈k〉 − 〈k(k − 1)〉ε+
1
2
〈k(k − 1)(k − 2)〉ε2 + · · ·+ cΓ (2− λ)ελ−2 , (53)

where the highest-order analytic term is O(εn), n = �λ− 2�. Using this in (52),
with qc = 1/(κ− 1) = 〈k〉/〈k(k − 1)〉, we get

〈k(k − 1)〉2
〈k〉 δ =

1
2
〈k(k − 1)(k − 2)〉ε+ · · ·+ cΓ (2− λ)ελ−3 . (54)



26 T. Kalisky et al.

The divergence of δ as λ < 3 confirms the vanishing threshold of the phase
transition in that regime. Thus, in the case λ > 3, keeping only the dominant
term as ε→ 0, (54) implies

ε ∼





(
〈k(k−1)〉2
c〈k〉Γ (2−λ)

) 1
λ−3

δ
1

λ−3 3 < λ < 4,
2〈k(k−1)〉2

〈k〉〈k(k−1)(k−2)〉δ λ > 4.
(55)

Returning to P∞, (50), we see that the singular contribution in ε is dominant
only for the range of λ < 2. For λ > 3, we find P∞ ∼ qc〈k〉ε ∼ (q − qc)β .
Comparing this to (55) we finally obtain

β =

{
1

λ−3 3 < λ < 4,
1 λ > 4.

(56)

We see that the order parameter exponent β attains its regular mean-field
value only for λ > 4. Moreover, since β > 1 for λ < 4 the percolation transition
is smooth and is higher than 2nd-order: for 3+ 1

n−1 < λ < 3+ 1
n−2 the transition

is of the nth-order (since all derivatives up to the n− 1th are continuous). The
result (56) has been reported before in [4], and also found independently in
a different but related model of virus spreading [41,42]. The existence of an
infinite-order phase transition at λ = 3 for growing networks of the Albert-
Barabási model, has been reported elsewhere [43,44]. These examples suggest
that the critical exponents are universal and not model-dependent but depend
only on λ.

For networks with λ < 3 the transition still exists, though at a vanishing
threshold, qc = 0. The sum in (52) becomes:

∞∑

k=0

kP (k)uk−1 ∼ 〈k〉+ cΓ (2− λ)ελ−2 . (57)

Using this in conjunction with (51), and remembering that here qc = 0 and
therefore q = δ, leads to

ε =
(−cΓ (2− λ)

〈k〉
) 1

3−λ

δ
1

3−λ , (58)

which implies

β =
1

3− λ , 2 < λ < 3 . (59)

In other words, the transition in 2 < λ < 3 is a mirror image of the transition
in 3 < λ < 4. An important difference is that qc = 0 is not λ-dependent in
2 < λ < 3, and the amplitude of P∞ diverges as λ → 2 (but remains finite as
λ→ 4).
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7.3 Finite Cluster Size Distribution

Next, we determine the exponents τ and σ, which determine ns, the number of
clusters of size s.

In [5] it was shown that for a random graph of arbitrary degree distribution
the finite clusters follow the usual scaling form:

ns ∼ s−τe−s/s∗
. (60)

At criticality s∗ ∼ |q− qc|−σ diverges and the tail of the distribution behaves as
a power law. We now derive the exponent τ . The probability that a site belongs
to an s-cluster is ps = sns ∼ s1−τ , and is generated by H0:

H0(x) =
∑

psx
s . (61)

The singular behavior of H0(x) stems from H1(x), as can be seen from (49).
H1(x) itself can be expanded from (48), by using the asymptotic form (53) of
G1. We let x = 1−ε, as before, but analyze at the critical point, q = qc. With the
notation φ(ε) = 1−H1(1− ε), we finally get (note that at criticality H1(1) = 1):

−φ = −qc + (1− ε)qc
[
1− φ

qc
+
〈k(k − 1)(k − 2)〉

2〈k〉 φ2 + · · ·+ cΓ (2− λ)
〈k〉 φλ−2

]
.

(62)

From this relation we extract the singular behavior of H0: φ ∼ εy. Then, using
Tauberian theorems [45] it follows that ps ∼ s−1−y, hence τ = 2 + y.

For λ > 4 the term proportional to φλ−2 in (62) may be neglected. The linear
term εφ may be neglected as well, due to the factor ε. This leads to φ ∼ ε1/2

and to the usual mean-field result

τ =
5
2
, λ > 4 . (63)

For λ < 4, the terms proportional to εφ, φ2 may be neglected, leading to φ ∼
ε1/(λ−2) and [39]

τ = 2 +
1

λ− 2
=

2λ− 3
λ− 2

, 2 < λ < 4 . (64)

Note that for 2 < λ < 3 the percolation threshold is strictly qc = 0. In that case
we analyze at q = δ small but fixed, taking the limit δ → 0 at the very end. For
the case 2 < λ < 3, τ in (64) represents the singularity of the distribution of
branch sizes. For the distribution of cluster sizes in this range one has to consider
the singularity of x in (49) leading to τ = 3 for this range.

For growing networks of the Albert-Barabási model with λ = 3, it has been
shown that sns ∝ (s ln s)−2 [44]. This is consistent with τ = 3 plus a logarithmic
correction. Related results for scale free trees have been presented in [46].

At the transition point the largest cluster, S can be obtained from the finite
cluster distribution by taking the integral over the tail of the distribution to be
equal 1/N . This results in
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S ∝ Nτ−1 = N (λ−2)/(λ−1). (65)

For λ = 4 this reduces to the known N2/3, termed by Erdös the “double jump”,
due to the transition of the largest cluster from order lnN for q < qc, to N2/3

at q = qc, to order N at q > qc [20]. For λ → 3, S ∝ N1/2. It is not yet clear
whether the results have a meaningful interpretation for λ < 3.

7.4 Finite Cluster Size Cutoff

The critical exponent σ, for the cutoff cluster size, can also be derived. Finite-size
scaling arguments predict [17] that

qc(∞)− qc(N) ∼ N− 1
dν = N− σ

τ−1 , (66)

where N is the number of sites in the network, ν is the correlation length critical
exponent: ξ ∼ (q − qc)−ν , and d is the dimensionality of the embedding space.
Using a continuous approximation of the distribution (19) one obtains [2]

κ ≈
(

2− λ
3− λ

)
K3−λ −m3−λ

K2−λ −m2−λ , (67)

where K ∼ N1/(λ−1) is the largest site degree of the network. For 3 < λ < 4,
this and (10) yield

qc(∞)− qc(N) ∼ ∆κ ∼ K3−λ ∼ N 3−λ
λ−1 , (68)

which in conjunction with (66) leads to

σ =
λ− 3
λ− 2

, 3 < λ < 4 . (69)

For λ > 4 we recover the regular mean-field result σ = 1/2. Note that (66), (56),
(64) are consistent with the known scaling relation: σβ = τ − 2 [17,16,40]. For
2 < λ < 3, qc(∞) = 0 and qc(N) ∼ Kλ−3 ∼ N (λ−3)/(λ−1) and therefore

σ =
3− λ
λ− 2

, 2 < λ < 3 , (70)

again consistent with the scaling relation σβ = τ − 2 (cf (59)).

7.5 Fractal Dimension

It is well known that on a random network in the well connected regime, the
average distance between sites is of order logkN [20,47,5]. Even smaller distances
have been shown to hold for scale-free networks [23,24]. However, the diluted case
is essentially the same as infinite-dimensional percolation. In this case, there is no
notion of geometrical distance (since the graph is not embedded in an Euclidean
space), but only of a distance along the graph (which is the shortest distance
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Fig. 9. Scaled mass (number of sites) M as a function of scaled distance d on the
spanning cluster, for Erdos-Renyi graphs above criticality (p < pc, 〈k〉 > 1). Different
symbols correspond to different values of 〈k〉 (1.01 − 1.06). The correlation length is
ξ = |p − pc|−1. Note that for d/ξ < 1, the slope is 2, corresponding to the behavior in
the critical regime, while for d/ξ > 1, M grows exponentially with d, corresponding to
the well connected regime.

along bonds). It is known from infinite-dimensional percolation theory that the
chemical fractal dimension at criticality is dl = 2 [16]. Therefore the average
(chemical) distance d between pairs of sites on the spanning cluster at criticality
behaves as (Fig. 9)

d ∼
√
M , (71)

where M is the number of sites in the spanning cluster. This is analogous to per-
colation in finite dimensions, where in length-scales smaller than the correlation
length the cluster is a fractal with dimension dl and above the correlation length
the cluster is homogeneous and has the dimension of the embedding space. In
our infinite-dimensional case, the crossover between these two behaviors occurs
around the correlation length ξl ≈ |pc − p|−νl .

Next, we calculate νl for scale free networks with 3 < λ < 4. Below the tran-
sition all clusters are finite and almost all finite clusters are trees. The correlation
length can be defined using the formula [16]:

ξ2l =
∑
l2g(l)∑
g(l)

. (72)

Where g(l), the correlation function, is the mean number of sites on the same
cluster at distance l from an arbitrary occupied site. The number of sites in the
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l shell can be seen to be approximately 〈k〉(κ− 1)l−1 [5]. Since κ− 1 = (κ0− 1)q
and qc = 1/(κ0 − 1) we get g(l) = c(1 − δ)l, where δ = q − qc. This leads to
ξl ∼ (q − qc)−1, i.e. νl = 1. Above the threshold, the finite clusters can be seen
as a random graph with the residual degree distribution of sites not included
in the infinite cluster [21]. That is, the degree distribution for sites in the finite
clusters is

Pr(k) = P (k)uk, (73)

where u is the solution of (51). Using this distribution we can define κr for the
finite clusters. This adds a term proportional to ελ−3 to the expansion of ξl. But,
since δ ∝ ελ−3 (55), this leads again to νl = 1.

Using ν the dimension of the network at criticality can be found. The chemical
dimension dl = 1/σνl. Therefore,

dl =
λ− 2
λ− 3

. (74)

Similar results have been obtained by Burda et al.[46] for scale-free trees. Since
every path when embedded in a space above the critical dimension can be seen
as a random walk it is known that ν = νl/2 [16]. Therefore, the fractal dimension
is,

df =
1
νσ

= 2
λ− 2
λ− 3

. (75)

The dimension of the embedding space, which is the upper critical dimension,
is:

dc =
1

νσ(τ − 1)
= 2

λ− 1
λ− 3

. (76)

Those dimensions reduce to the known 2, 4, and 6, respectively, for λ = 4.
A direct method for calculating the chemical dimension is also possible. De-

noting the generating function of the number of sites on the lth layer of some
branch, as Nl(x), we get

Nl+1(x) = G1(Nl(x)) . (77)

We are interested in the behavior of the average number of sites at a chemical
distance l for those branches the have at least l layers. Since we expand exactly
at criticality, the average branching factor is exactly 1, and therefore Nl(1) = 1
for any l. Therefore, Al, the average number of sites for surviving branches is

Al =
1

1−Nl(0)
, (78)

since Nl(0) is the probability of the branching process to die out before the lth
layer. At criticality the branching process will die out with probability Nl(0) → 1
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as l → ∞, and therefore for large l we can take Nl(0) = 1 − εl. Expanding G1
at criticality one obtains ((52) and (53), with δ = 0)

G1(1− ε) = 1− ε+
cΓ (2− λ)
〈k2〉 − 〈k〉ε

λ−2 + . . . . (79)

Substituting Nl(0) = 1− εl into (77) one obtains

1− εl+1 = 1− εl + cΓ (2− λ)
〈k2〉 − 〈k〉ε

λ−2
l + . . . . (80)

Guessing a solution of the form εl ≈ Bl−d we get

B(l + 1)−d ≈ B(l−d − dl−d−1) = Bl−d − cΓ (2− λ)
〈k2〉 − 〈k〉 (Bl

−d)λ−2 . (81)

implying that d = 1/(λ− 3), εl ∼ l−d, and Nl(0) ∼ 1−Dl−d for some constant
D 12. The average number of sites for surviving branches at layer l is thus:

Al =
1
εl
∼ ld . (82)

Noting that the mass of the branch is the sum of the layers up to the lth one,
we get dl = d+ 1 = (λ− 2)/(λ− 3), similar to the results obtained in (74). The
scaling relation therefore also proves to be correct in this case.

8 Conclusions

We have studied the structural properties and stability of scale-free graphs. We
define a “layer” in a network as the set of nodes at a given distance from a
chosen node. We have found that the degree distribution of the nodes of a scale
free network at each layer obeys a power law with an exponential cutoff. We de-
rived equations for this exponential cutoff and compared them with simulations.
We also model the behavior of the number of nodes at each layer, and explain
the observed exponential decay in the outer layers of the network. Our findings
may have dual importance. First, they can help in devising better network algo-
rithms that take advantage of the network structure [48]. Second, our analytical
findings suggest a simple local test for the validity of the power law model as
an exact model of the Internet [14]. Further parameters of the network such as
betweenness centrality [49,50] should also be taken into account when efficient
algorithms are considered.
12 The exponent d = 1/(λ − 3) is known in directed percolation as the survivability

exponent. εl ∼ l−d gives the probability for a percolation cluster to survive up to
chemical layer l at criticality. It may be proved by scaling relations that d = β

ν
,

which is also the case here.
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Furthermore, we have shown that many percolation properties of those
graphs are different from generalized random graphs and from the regular mean-
field percolation, due to their diverging moment. We have shown that scale free
graphs with 2 < λ < 3 are robust to random breakdown of almost 100% of
the nodes, making this a favorable design for unmanaged networks, like the In-
ternet, where nodes can be disconnected or fail unexpectedly. However, those
networks are vulnerable to intentional attack on the most important nodes. The
lack of percolation threshold also makes those networks sensitive to virus propa-
gation [41,51], while their attack vulnerability makes them amenable to targeted
immunization of the highest degree nodes [52,53]. An efficient strategy for the
immunization of complex networks without any global information on the net-
work topology has been introduced in [54,31].

We have also studied the behavior of these networks near the percolation
transition. We have shown that scale free networks with λ > 4 near the perco-
lation transition behave similar to infinite dimensional percolation theory, with
M ∝ l2, where there is a crossover to the exponential behavior,M ∝ kl, far from
the threshold. Thus, networks near the critical point become sparser, and com-
munication becomes inefficient, as packets have to travel a long distance (many
routers) on the way to their destination.

We have also shown that the critical exponents behave differently in scale-
free networks than in regular networks both in the regime 3 < λ < 4 where a
transition occurs in a finite pc, as well as in the regime 2 < λ < 3 where pc → 0.
In particular β > 1 in both those regimes, making the transition of higher order
rather than of second order.

Acknowledgments

Support from the Israel Science Foundation and the NSF are gratefully acknowl-
edged (DbA). The authors wish to thank Danny Dolev, Osnat Mokryn, Yuval
Shavitt and Keren Erez for useful discussions.

References

1. R. Albert, H. Jeong, and A. L. Barabási, Nature, 406, 6794, 378 (2000).
2. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626

(2000).
3. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. Lett.

85, 5468 (2000)..
4. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 86, 3682

(2001).
5. M. E. J. Newman, S. H. Strogatz, and D. J. Watts Phys. Rev. E, 64, 026118 (2001).
6. M. Faloutsos, P. Faloutsos, and C. Faloutsos, ACM SIGCOMM ’99 Comput. Com-

mun. Rev. 29, 251 (1999).
7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A.

Tomkins, and J. Wiener, Computer Networks 33, 309 (2000).



Tomography and Stability of Complex Networks 33

8. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A.-L. Barabási, Nature, 407,
651 (2000).

9. R. Albert and A.-L. Barabasi, Rev. of Mod. Phys. 74, 47 (2002).
10. S. N. Dorogovtsev, and J. F. F. Mendes, Adv. in Phys., 51 (4), (2002).
11. M. E. J. Newman, SIAM Review 45, 167 (2003).
12. J. F. F. Mendes, S. N. Dorogovtsev and A. F. Ioffe, Evolution of Networks: From

Biological Nets to the Internet and WWW, (Oxford University Press, 2003).
13. R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet : A

Statistical Physics Approach, (Cambridge University Press, 2003).
14. R. Cohen, D. Dolev, S. Havlin, T. Kalisky, O. Mokryn and Y. Shavitt, cond-

mat/0305582.
15. H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai Nature, 411, 41 (2001).
16. A. Bunde, and S. Havlin (editors), Fractals and Disordered System (Springer,

New York, 1996).
17. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd edition (Tay-

lor and Francis, London, 1991).
18. W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley

& Sons).
19. M. Molloy and B. Reed, Random Structures and Algorithms 6, 161 (1995).
20. B. Bollobás, Random Graphs. pp. 123-136 (Academic Press, London, 1985).
21. M. Molloy and B. Reed, Combinatorics, Probability and Computing 7, 295 (1998).
22. W. Aiello, F. Chung and L. Lu, Proc. 32nd ACM Symp. Theor. Comp., (2000).
23. R. Cohen and S. Havlin, Phys. Rev. Lett, 90, 058701 (2003).
24. S.N. Dorogovtsev, J. F. F. Mendes, and A.N. Samukhin, Nuclear Physics B 653

(3), 307 (2003).
25. B. Bollobas and O. Riordan, in Handbook of Graphs and Networks, Eds. S. Born-

holdt and H. G. Schuster, (Wiley-VCH, 2002).
26. B. Bollobás, Europ. J. Combinatorics 1, 311-316 (1980).
27. A. F. Rozenfeld, R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 89,

218701 (2002).
28. Z. Burda and A. Krzywicki, Phys. Rev. E 67, 046118 (2003).
29. C. P. Warren, L. M. Sander and I. M. Sokolov, Phys. Rev. E 66, 56105 (2002).
30. R. Xulvi-Brunet, W. Pietsch and I.M. Sokolov, Phys. Rev. E 68, 036119 (2003).
31. R. Cohen, S. Havlin and D. ben-Avraham, Chap. 4 in Handbook of Graphs and

Networks, Eds. S. Bornholdt and H. G. Schuster, (Wiley-VCH, 2002).
32. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 63, 062101

(2001).
33. M. E. J. Newman, Phys. Rev. Lett 89, 208701 (2002).
34. A. Vazquez and R. Pastor-Satorras and A. Vespignani cond-mat/0206084 (2002).
35. S. Maslov and K. Sneppen, Science 296, 910 (2002).
36. L. A. Adamic, R. M. Lukose, A. R. Punyani and B. A. Huberman, Phys. Rev. E

64, 046135 (2001).
37. D. J. Watts, P. S. Dudds and M. E. J. Newman, Science 296, 1302 (2002).
38. K. Erez, MSc. thesis (2001), Bar-Ilan University.
39. R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. E 66, 036113 (2002).
40. D. ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered

Systems (Cambridge University Press, 2000).
41. R. Pastor-Sattoras and A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001).
42. Y. Moreno, R. Pastor-Satorras, and A. Vespignani Eur. Phys. J. B 26, 521 (2002).
43. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H.

Strogatz, Phys. Rev. E, 64, 041902 (2001).



34 T. Kalisky et al.

44. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. E 64, 066110
(2001).

45. G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Am-
sterdam, 1994).

46. Z. Burda, J. D. Curreira, and A. Krzywicki, Phys. Rev. E 64, 046118 (2001).
47. F. Chung and L. Lu, Adv. Appl. Math., 26, 257, (2001).
48. D. Dolev, O. Mokryn and Y. Shavitt, IEEE INFOCOM’03 (2003).
49. K.-I. Goh, B. Kahng and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).
50. K.-I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim Proc. Natl. Acad. Sci. USA 99,

12583 (2002).
51. R. Pastor-Sattoras and A. Vespignani, Phys. Rev. E. 63, 066117 (2001).
52. R. Pastor-Satorras, and A. Vespignani Phys. Rev. E 65, 036104 (2002).
53. Z. Dezso, A.-L. Barabasi, Phys. Rev. E 65, 055103 (R) (2002).
54. R. Cohen, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 91, 247901 (2003).
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Alexander N. Samukhin1,2

1 Departamento de F́ısica, Universidade de Aveiro, Campus Universitário de
Santiago, 3810-193 Aveiro, Portugal

2 A.F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

Abstract. We review a general approach that describes the spectra of eigenvalues
for random graphs with a local tree-like structure. The exact equations to the spectra
of networks with a local tree-like structure, are presented. The tail of the density of
eigenvalues ρ (λ) at large |λ| is related to the behavior of the vertex degree distribution
for large value of degree. In particular, as P (k) ∼ k−γ , ρ (λ) ∼ |λ|1−2γ . Under an
effective medium approximation we propose a simple approximation, calculate spectra
of various graphs analytically. We also analyse the spectra of various complex networks
and discuss the role of vertices of low degree. We show that spectra of locally tree-like
random graphs gives a good description of the spectral properties of real-life networks
like the Internet.

1 Introduction

Complex networks, like the Internet or WWW, biological networks of interacting
proteins, social networks, among others (see [1–7]), became in the recent past
examples of intense research in Physics. Many properties of these networks have
been studied after the pioneer paper of Watts and Strogatz [8]. More recently, a
growing interest appears, in particular, in networks with a scale-free structure.
They appear in many different contests, like in the examples given before, but
more interestingly is the fact that most of them present the same non trivial
statistical properties.

A network is described by nodes and links between them according some
degree distribution. The structure of networks may be completely described by
the associated adjacency matrices. The adjacency matrices of undirected graphs
are symmetric matrices with matrix elements, equal to number of edges between
the given vertices. The eigenvalues of an adjacency matrix are related to many
basic topological invariants of networks such as, for example, the diameter of a
network [9,10]. Recently, in order to characterize networks, it was proposed to
study spectra of eigenvalues of the adjacency matrices as a fingerprint of the
networks [11–18]. The rich information about the topological structure and dif-
fusion processes can be extracted from the spectral analysis of the networks.
Studies of spectral properties of the complex networks may also have a gen-
eral theoretical interest. The random matrix theory has been successfully used
to model statistical properties of complex classical and quantum systems such
as complex nucleus, disordered conductors, chaotic quantum systems (see, for
example, reviews [19]), the glassy relaxation [20] and so on. As the adjacency

S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, and A.N. Samukhin, Spectral Analysis of Random
Networks, Lect. Notes Phys. 650, 35–50 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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matrices are random, in the limit N −→∞ (N is the total number of vertices),
the density of eigenvalues could be expected to converge to the semicircular dis-
tribution in accordance with the Wigner theorem [21]. However, Rodgers and
Bray have demonstrated that the density of eigenvalues of a sparse random ma-
trix deviates from the Wigner semicircular distribution and has a tail at large
eigenvalues [22], see also [23]. Recent numerical calculations of the spectral prop-
erties of small-world and scale-free networks [13–15], and the spectral analyses of
the Internet [11,12,16,17] have also revealed that the Wigner theorem does not
hold. The spectra of the Internet [11,12] and scale-free networks [14,15] demon-
strate an unusual power-law tail in the region of large eigenvalues. At the present
time there is a fundamental lack in understanding of these anomalies. In order to
carry out a complete spectral analysis of real networks it is necessary to take into
account all features of these complex systems described by a degree distribution,
degree correlations, the statistics of loops, etc.

This approach is valid for any network which has a local tree-like structure. In
particular, these are uncorrelated random graphs with a given degree distribution
[24,25], and their straightforward generalizations [26] allowing pair correlations
of the nearest neighbors. These graph ensembles have one common property:
almost every finite connected subgraph of the infinite graph is a tree. The tree is a
graph, which has no loops. A random Bethe lattice is an infinite random tree-like
graph. All vertices on a Bethe lattice are statistically equivalent. These features
(the absence of loops and the statistical equivalence of vertices) are decisive
for our approach. The advantage of Bethe lattices is that they frequently allow
analytical solutions for a number of problems: random walks, spectral problems,
etc.

Real-life networks, however, often contain numerous loops. In particular, this
is reflected in a strong “clustering”, which means that the (relative) number of
loops of length 3 do not vanish even in very large networks. Nevertheless, we
believe, that the study of graphs with a local tree-like structure may serve as a
starting point in the description of more complex network architectures.

In this review we present the exact equations which determine the spectra of
infinite random uncorrelated random tree-like graphs. For this, we use a method
of random walks. We propose a method of an approximate solution of the equa-
tions. We shall show that the spectra of adjacency matrices of random tree-like
graphs gave a tail at large eigenvalues. In the case of a scale-free degree distri-
bution, the density of eigenvalues has a power-law behavior. A more detailed
analyse of the spectra of correlated and uncorrelated graphs can be seen in [27].

2 Random Walk on a Tree

Lets call the probability to transit from node j to node i is Pij . If node j has
degree kj and if the probability to transit from node j to each of his nearest
neighbors is equal then, Pij ≡ prob (j → i) = aij/kj , where aij is the adjacency
matrix. Pij obeys the following normalization condition:

∑kj

i=1 Pij = 1. Lets
introduce the probability gi(t) to find a walker at node i if at time t = 0 the
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walker was at node 0 that is g0(t = 0) = 1. The temporal evolution of this
quantity obeys a master equation of the type,

dgi(t)
dt

=
∑

m

Pimgm(t)− gi(t)
∑

m

Pmi = −
∑

m

(δim − Pim)gm(t). (1)

Lets define the Laplacian in the following way: Lim ≡ δim − Pim. So, one way
to obtain information about the diffusion process in the network is through the
spectrum of the Laplacian. As we will show the spectral analysis can be very
useful in many aspects giving important information not only about the diffusion
process but also about the structural properties of the net.

3 General Theory

Let Â = (avw) be the N ×N symmetric adjacency matrix of an N -vertex graph
G, a2vw = avw, avv = 0. The degree kv of a vertex v is defined as,

kv =
∑

w

avw . (2)

Every graph is characterized by a degree distribution P (k),

P (k) =

〈
1
N

N∑

v=1

δ (kv − k)
〉
. (3)

Graph ensembles with a given uncorrelated vertex degree distribution may be
realized e.g. if we consider all possible graphs with N (k) vertices of degree k,
k = 1, 2, . . . , assuming N (k) /N → P (k) in the thermodynamic limit [N →
∞, N (k) →∞].

The spectrum of Â may be calculated by using the method of random walks
on a tree-like graph G and generating functions [28]. We define a generating
function,

R(z) =
1
N

N∑

v=1

∞∑

n=0

ρv(n)zn , |z| < 1 (4)

where ρv(n) is the number of walks of length n from v to v, where v is any vertex
of G,

ρv(n) = (Ân)v,v . (5)

In a tree-like graph the number of steps n is an even number. In order to return
to v we must go back along all of the edges we have gone.

Let qv(n) be the number of walks of length n starting at v and ending at v
for the first time. We define
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Fig. 1. Schematic representation of first contributions to ρv(n) in (7).

Qv(z) =
∞∑

n=0

qv(n)zn . (6)

One can note that ρv(n) is given by (Fig. 1)

ρv(n) = qn +
∑

n1,n2

qn1qn2δn1+n2,n +
∑

n1,n2,n3

qn1qn2qn3δn1+n2+n3,n + · · · (7)

Here the first term is the number of walks of length n starting at v and ending at
v for the first time, the second term is the number of walks of length n starting at
v and ending at v with one intermediate visit of v, the third term is the number
of walks with two intermediate visit of v and so on.

Using this relationship gives

R(z) =
1
N

N∑

v=1

1
1−Qv(z) . (8)

Let d(w, v) = m ≥ 1 be the distance from w to v and t(m)
w,v (n) be the number of

paths of length n starting at w and ending at v for the first time. We define

T (m)
wv (z) =

∞∑

n=0

t(m)
w,v (n)zn . (9)

One can prove

Qv(z) = z
∑

w

T (1)
wv (z) , (10)

T (m)
wv (z) = T (1)

wg1(z)T
(1)
g1g2(z) · · ·T (1)

gm−1v(z) , (11)

where w −→ g1 −→ g2 −→ · · · gm−1 −→ v is the shortest path from w to v.
There is an important relationship:

T (1)
wv (z) = z + z

∑

g

T (2)
gv (z) = z + z

∑

g

T (1)
gw (z)T (1)

wv (z) . (12)

In this sum the vertex g is the nearest neighbor of w and a second neighbor
of the vertex v. Solving the recurrence equation (12), we can find T (1)

wv (z) and
Qv(z).

Lets define T̃ (1)
wv (z) ≡ T

(1)
wv (z−1), then equation (12) may be written in the

form,
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T̃ (1)
wv (z) =

1

z −∑
g T̃

(1)
gw (z)

. (13)

If we can solve this equation one can find Qv(z), from which we get R(z). Let
us define B(z) ≡ z−1R(z−1). Then the density of the eigenvalues λ of a random
graph is determined as follows:

ρ(λ) = − Im 〈B(λ+ iε))〉 /π , (14)

where ε is positive and tends to zero. Note that the equations (6)–(13) are valid
for both uncorrelated and correlated tree-like graphs.

In the case of a k−regular connected graph we have T̃ (1)
wv (z) ≡ T (z) and

Qv(z) ≡ Q(z). In this case (13) gives becomes, zT (z)−(k−1)T 2(z) = 1. Solving
this equation, we get the well known result:

ρ(λ) =
k

2π

√
4(k − 1)− λ2

k2 − λ2 . (15)

This is a continuous spectrum of extended eigenstates with eigenvalues |λ| <
2
√
k − 1.

4 Spectra of Uncorrelated Graphs

In the case of uncorrelated random tree-like graphs, kw − 1 random parameters
T̃

(1)
gw (z) on the right-hand side of (13) are equivalent and statistically indepen-

dent. They are also independent on the degree kw. We define the distribution
function of T̃ (1)

wv (z) at z = λ+ iε in the Fourier representation as:

Fλ(x) =
〈
exp

[
−ixT̃ (1)

wv (λ+ iε)
]〉
, (16)

where the brackets 〈...〉 denote the averaging over the ensemble of random un-
correlated graphs associated with a degree distribution P (k). The statistical in-
dependence of the k− 1 random parameters T̃ (1)

gw (λ+ iε) ≡ Ti, i = 1, 2, ..., k− 1,
k ≡ kw, on the right hand side of (13) allows us to use the following identity:

Fλ(x) ≡ 〈exp(−ixT )〉 =

〈
exp

(
− ix

λ+ iε−∑k−1
i=1 Ti

)〉

= 1−√x
∞∫

0

dy√
y
J1(2

√
xy)

〈
exp

(
iy[λ+ iε−

k−1∑

i=1

Ti]

)〉

= 1−√x
∞∫

0

dy√
y
J1(2

√
xy)eiy(λ+iε)

∑

k

kP (k)
〈k〉 〈exp(−iyT )〉k−1 (17)

where J1(x) is the Bessel function and 〈k〉 =
∑
k kP (k). Thus, we get the exact

self-consistent equation for Fλ(x):
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Fλ(x) = 1−√x
∫ ∞

0

dy√
y
J1(2

√
xy)eiyλΦ1(Fλ(y)) , (18)

where Φ1(x) ≡
∑∞
k=1 kP (k)xk−1/ 〈k〉. Solving (18) give the distribution of T ,

and so we can obtain Q, from which we get R. Equations (8), (10), and (14)
gives

ρ(λ) = − 1
π

Im

〈
1

λ−∑k
i=1 Ti

〉
=

1
π

Re
∫ ∞

0
dyeiyλΦ(Fλ(y)) , (19)

where Φ(x) ≡ ∑∞
k=1 P (k)xk. From (18), we find the n-th moment of the distri-

bution function Ψλ(T ), (16):

Mn ≡ 〈Tn〉 =
1

(n− 1)! in

∫ ∞

0
dy yn−1eiyλΦ1(Fλ(y)) . (20)

5 Effective Medium Approximation

In the absence of a technique to solve (18) exactly we will use an approximate
solution. Neglecting fluctuations of T around a mean value T (λ) ≡ 〈T 〉, a self-
consistent equation for the function T (λ) may be obtained if we insert

Fλ(x) ≈ e−ixT (λ) (21)

into the right-hand side of (20) for n = 1. We get

T (λ) =
1
〈k〉

∑

k

kP (k)
λ+ iε− (k − 1)T (λ)

. (22)

This approach is known by “effective medium” (EM) approximation. At real λ,
T (λ) is a complex function, which is to be understood as an analytic continuation
from the upper half-plane of λ, T (λ) ≡ T (λ+ iε). Therefore, ImT (λ+iε) < 0. In
the framework of the EM approach, the density ρ(λ), (19), takes an approximate
form

ρ(λ) = − 1
π

∑

k

kP (k) ImT (λ)
(λ− kReT (λ))2 + k2(ImT (λ))2

. (23)

6 Tail Behavior and Finite-Size Effects

Equation (22) may be solved analytically at |λ|  1. We look for a solution
in the region ImT (λ) � ReT (λ) � 1. It is convenient to use a continuum
approximation in (22). The real and imaginary parts of this equation take a
form
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ReT (λ) =
1

2λ 〈k〉
∫ kcut

k0

dk kP (k)
(1− (k − 1)R1)

2+ ((k − 1)I1)
2 ,

1 =
1

λ2 〈k〉
∫ kcut

k0

dk k(k − 1)P (k)
(1− (k − 1)R1)

2+ ((k − 1)I1)
2 , (24)

where R1 = Re(T (λ)/λ), I1 = Im(T (λ)/λ) and k0 and kcut are the smallest and
largest degrees, respectively. A region k0 ≤ k � kλ gives a regular contribution
into the integrals (24) while a region k ∼ kλ  1 gives a singular contribution.
Here kλ ≡ λ/ReT (λ) + 1. As a result we obtain

Re T (λ) ∼= 1
2λ

+
πkλP (kλ)

2 〈k〉 ImT (λ)
, (25)

1 ∼= 1
λ2 〈k〉

∫ kλ

k0

dk k(k − 1)P (k) +
πλkλP (kλ)
〈k〉 ImT (λ)

. (26)

If P (k) decreases faster than k−2 at k  1, i.e. 〈k〉 is finite, then in the leading
order of 1/λ we find

T (λ) ∼= λ−1 − iπ |λ| kλP (kλ)/ 〈k〉 . (27)

Within the same approach one can find from (23) that the density ρ(λ) also has
two additive contributions

ρ(λ) ∼= −〈k〉 ImT (λ)
πλ2 +

kλP (kλ)
|λ| . (28)

Inserting (27) gives the density

ρ(λ) ∼= 2
kλ
|λ|P (kλ) . (29)

Here kλ = λ/ReT (λ) + 1 = λ2 + O(1). The asymptotic expression (29) is our
main result. The right-hand side of this expression originates from two equal,
additive contributions: the contribution from the real part of T (λ) and the one
from the imaginary part of T (λ). One can show that the asymptotic behavior of
the real part, ReT (λ) = λ−1 + O(λ−3), in the leading order of 1/λ is universal
and is valid even for graphs with finite loops. Contrastingly, the asymptotics of
ImT (λ) in the leading order of 1/λ and the corresponding contribution to the
right-hand side of (28) depend on details of the structure of a network.

The analysis of (22) shows that the main contribution to an eigenstate with
a large eigenvalue λ is given by vertices with a large degree k ∝ kλ  1. As we
will show below, in the limit λ 1, the result (29) is asymptotically exact. The
relationship between largest eigenvalues and highest degrees, λ2 +O(1) = k, for
a wide class of graphs was obtained in two mathematical papers, [29,30].

The contribution of highly connected vertices may be compared with a simple
spectrum of “stars”, which are graphs with a vertex of degree k, connected to
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k dead ends. The spectrum of this star-like graph consists of two eigenvalues
λ = ±√k and a (k − 1)-degenerate zero eigenvalue. Note that asymptotically,
in the limit of large λ, (29) gives ρ(λ) ∼= 2|λ|P (λ2) if P (k) decreases slower
than an exponent function at large k, that is, if higher moments of the degree
distribution diverge.

A classical random graph [31,32] has the Poisson degree distribution P (k) =
e−〈k〉 〈k〉k /k!. The tail of ρ(λ) is given by (29) with kλ ≈ λ2 + a  1 where a
is of O(1): ρ(λ) ∼ λ−2(λ2+a) exp[(1 + ln〈k〉)λ2]. This equation agrees with the
previous results [22,23] obtained by different analytical methods.

In the case of a “scale-free” graph with P (k) ≈ P0k
−γ at large k and |λ| 

1, we get an asymptotically exact power-law behavior: ρ(λ) ≈ 2 |λ|P (λ2) =
2P0 |λ|−δ, where the eigenvalue exponent δ = 2γ − 1.

For finite N  1, there is a finite-size cutoff of the degree distribution kcut ∝
k0N

1/(γ−1) [33]. The cutoff determines the upper boundary of eigenvalues: λ <
k

1/2
cut . This result agrees with an estimation of the largest eigenvalue of sparse

random graphs obtained in [34].

7 Spectrum of a Transition Matrix

We will consider now the case of random walks on a graph with the transition
probability 1/kv of moving from a vertex v to any one of its neighbors. The
transition matrix P̂ then satisfies,

Pw,v = aw,v/kv . (30)

For each vertex v, Pw,v obeys the normalization condition:
∑
w Pw,v = 1. Also,

P̂ is related with the Laplacian of the graph by,

Lv,w =
{

1 if v = u
−av,w/

√
kvkw otherwise

, (31)

as follows: P̂ = D̂1/2(1− L̂)D̂−1/2 where Dv,w = δv,w/kv. Therefore, if we know
the density ρ(λ) of eigenvalues of P̂ , we can find the density of eigenvalues of
the Laplacian: ρL(λ) = ρ(1 − λ). We denote the eigenvalues of the matrix P̂
by λ1 ≥ λ2 ≥ ... ≥ λN . The eigenfunction fv = kv corresponds to the largest
eigenvalue λ1 = 1.

In order to calculate the spectrum of P̂ we use the same method of random
walks described in Sect. 2. The probability of one step is given by (30). We
define the generating function Qv(z) and T̃ (1)

wv (z−1) ≡ T
(1)
wv (z) and obtain an

exact equation which is similar to (13):

T̃ (1)
wv (z) =

1

kwz −
∑
g T̃

(1)
gw (z)

, (32)
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where g ∼ w but g �= v. At z = λ + iε, we get exact equations for the function
Fλ(x) =

〈
exp(−ixT̃ (1)

wv (λ+ iε))
〉

and the density of the eigenvalues ρ(λ):

Fλ(x) = 1−√x
∫ ∞

0

dy√
y
J1(2

√
xy)eiyλΦ1(eiλyFλ(y)) , (33)

ρ(λ) =
1
π

Re
∑

k

P (k)k
∫ ∞

0
dy eikλyF kλ (y) . (34)

The function Fλ(x) = e−ix is an exact solution of (33). This solution corresponds
to the eigenvalue λ1 = 1 and gives the delta-peak δ(λ− 1) in the density ρ(λ).
In order to find the spectrum at λ ≤ λ2 we use, as before, the EM approach. We
assume Fλ(x) ≈ e−ixT (λ) and get an equation for a complex function T (λ):

T (λ) =
1
〈k〉

∑

k

kP (k)
kλ+ iε− (k − 1)T (λ)

. (35)

ρ(λ) is given by

ρ(λ) = − 1
π

Im
1

λ− T (λ)
. (36)

The spectrum of the transition matrix of a k-regular tree can be obtained easily
using (35) and (36). The second eigenvalue is given by λ2 = 2

√
k − 1/k.

8 Spectra of Different Topological Graphs

Let us compare available spectra of classical random graphs, scale-free networks
[14,15], empirical spectra of the Internet [11,12,17], and of the random tree-like
graphs.

We start by discuss the spectra of the adjacency matrices. The spectra were
calculated using the EM approach from (22) and (23) for different degree distri-
butions P (k). The results can be seen in Figs. 2 and 3.

Classical random graphs — Classical random graphs have the Poisson degree
distribution. The density of eigenvalues of the associated adjacency matrix has
been obtained numerically in [14]. In Fig. 2 we display results of the numerical
calculations and from results obtained within the EM approach. We found a
good agreement in the whole range of eigenvalues. There are only some small
differences in the region of small eigenvalues which may be explained by an
inaccuracy of the EM approach in this range. In this region, the density ρ(λ) has
an elevated central part that differs noticeably from the semicircular distribution.
The spectrum also has a tiny tail given by (29) which can hardly be seen in Fig. 2,
see for detail Sect. 5 and [22,23]

Scale-free networks — Spectra of scale-free graphs with the degree distri-
bution P (k) = P0k

−γ differ strongly from the semi-circular law [14,15]. The
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Fig. 2. Density of eigenvalues for the adjacency matrices of two different networks:
(i) Classical random graph (the Erdős-Rényi model) with the average degree 〈k〉 = 10:
the effective medium (EM) approach (the solid line) and numerical calculations for
the graphs of 20 000 vertices [14] (the open circles). (ii) Scale-free random tree-like
graph with γ = 3 and the smallest degree k0 = 5: the EM approach (the dashed line),
the improved EM approach, see the text (the dashed-dotted line). The results of the
simulations of the Barabási-Albert model of 7000 vertices [14] (the open squares). The
semi-circular law is shown by the thin solid line.

Barabási-Albert model has a tree-like structure, the exponent γ = 3 of the de-
gree distribution, and negligibly weak correlations between degrees of the nearest
neighbors [4]. Therefore, one can assume that the spectrum of a random tree-
like graph can mimic well the spectrum of the model. In Fig. 2 we compare
the spectrum of the random tree-like graph with γ = 3 and the spectrum of
the Barabási-Albert model obtained from simulations [14]. The density of states
ρ(λ) has a triangular-like form and demonstrates a power-law tail. There is only
a noticeable deviation of the EM results from the results of simulations [14] at
small eigenvalues λ. In order to improve the EM results, we used, as an ansatz,
the distribution function Fλ(x) = [1 + a(λ)x2]e−ixT (λ) instead of the function
Fλ(x) = e−ixT (λ). In this case, there are two unknown complex functions a(λ)
and T (λ) which were determined self-consistently from (18).

Power-law tail — The power-law behavior of the density of eigenvalues
ρ(λ) ∝ λ−δ is an important feature of the spectrum of scale-free networks.
The simulations [14] of the Barabási-Albert model having the degree exponent
γ = 3 revealed a power-law tail of the spectrum, with the eigenvalue exponent
δ ≈ 5. Our prediction δ = 2γ − 1 = 5 is in agreement with the result of these
simulations.

The study of the topology of the Internet at the Autonomous System (AS)
level revealed a power-law behavior of eigenvalues of the associated adjacency
matrix [11,12]. The degree distribution of the network has the exponent γ ≈
2.1[12]. The eigenvalues λi of the Internet graph are proportional to the power
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of the rank i of an eigenvalues (starting with the largest eigenvalue): λi ∝ iε with
some exponent ε. This leads to ρ(λ) ∝ ∑

i δ(λ− λi) ≈
∫
δ(λ− iε)di ∝ λ−1+1/ε.

The Multi dataset analyzed in [12] gave ε ≈ −0.447 and, hence, the eigenvalue
exponent 1− 1/ε ≈ 3.2. The Oregon dataset [12] gave ε ≈ −0.477, 1− 1/ε ≈ 3.1.
Our results with γ = 2.1 substituted, give the eigenvalue exponent δ = 2γ− 1 ≈
3.2 in agreement with the results obtained from empirical data for this network.
There are the following reasons for the agreement between the theory for tree-like
graphs and the data for the Internet. At first, although the average clustering
coefficient of the Internet at AS level is about 0.2, the local clustering coefficient
rapidly decreases with increasing the degree of a vertex [36]. In other words,
the closest neighborhood of vertices with large numbers of connections is “tree-
like”. Recall that vertices with large numbers of connections determine the large-
eigenvalue asymptotics of the spectrum. So, we believe that our results for the
asymptotics of the spectra of tree-like networks is also valid for the Internet and
other networks with similar structure of connections. Secondly, the Internet is
characterized by strong correlations between degrees of neighboring vertices [35].
However, as we have shown in Sect. 6, such short-range degree correlations do
not affect the power-law behavior of eigenvalues.

The study of the Internet topology [12] also revealed a correspondence be-
tween the large eigenvalues λi and the degree ki: ki = λ2

i . This result is in
agreement with our theoretical prediction that it is the highly connected ver-
tices with a degree about kλ ≈ λ2 that produce the power-law tail ρ(λ) ∝ λ−δ.

Pseudo-fractal network — The calculations of the eigenvalues spectrum of the
adjacency matrix of a pseudofractal graph with γ = 2.585 . . . [37] have revealed
a power-law behavior with δ ≈ 4.6. The effective medium approximation gives
lower value δ = 2γ − 1 ≈ 4.2. The origin of the difference is not clear. One
should note that the pseudofractal is a deterministically growing graph with a
very large clustering coefficient C = 4/5 and, what is especially important, with
long-range correlations between degrees of vertices.

Weakly connected nodes — Let us study the influence of weakly connected
vertices with degrees 1 ≤ k ≤ 5 on the spectra of random tree-like graphs
with the degree distribution P (k) = P0k

−γ . In Fig. 3a and 3b we represent the
evolution of the spectrum of the network with γ = 5, when the smallest degree
k0 decreases from 5 to 1. The spectra were calculated in the framework of the
EM approximation. Similar results are obtained at different γ. For k0 ≤ 4, two
peaks at non-zero eigenvalues emerge in the density of states ρ(λ). In order to
understand an origin of the peaks one can note that for this degree distribution
the average degree 〈k〉 is close to k0. For example, at k0 = 3 we have 〈k〉 = 3.49.
Therefore, in this network, the probability to find a vertex having three links is
larger than the probability to find a vertex with a degree k ≥ 4. There are large
parts of the network which have a local k = 3–regular structure. In Fig. 3a we
show a density of eigenvalues of an infinite k = 3–regular Bethe lattice [see (15)
at k = 3]. At small eigenvalues, the density of the regular tree fits the density
of the random network. At large λ, the density of eigenvalues demonstrates a
power-law behavior with the exponent δ = 2γ − 1.
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Fig. 3. Evolution of spectra of a random tree-like graph with the scale-free degree
distribution for γ = 5 and the smallest degree k0 = 1, 2, 3 and 5. The panel a shows
the spectra of the graphs with k0 = 2, 3 and 5. The dotted line corresponds to the
density of eigenvalues of an infinite chain. The dashed and thin solid lines present the
spectrum of the k = 3 and 6 regular Bethe lattices. The panel b shows the spectrum of a
random uncorrelated graph having dead-end vertices with the probability P (1) = 0.3.
The insert shows the behavior of the density of eigenvalues ρ(λ) near the dip at
P (1) = 0.1, 0.2, and 0.3. The central peak is produced by localized states.

In the case k0 = 2 we have 〈k〉 = 2.23. This network contains long chains
which connect vertices with degrees k ≥ 3. In Fig. 3a we display the density
of eigenvalues of an infinite chain which is given by (15) at k = 2 [note that it
presents a divergence at λ = ±2 ]. At small eigenvalues this density of eigenvalues
fits well the density of eigenvalues of the random network.

Thus, it is the vertices with small degrees that are responsible for the forma-
tion of density ρ(λ) of networks at small eigenvalues.

Dead-end vertices — Let us investigate the effect of dead-end vertices on the
spectra of random tree-like graphs with different degree distributions. Figure 3
b shows a spectrum of a scale-free network with γ = 5 and the probability of
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dead-end vertices P (1) = 0.3. The EM approximation is used. The spectrum has
a flat part and two peaks at moderate eigenvalues. As we have shown above, this
(intermediate) part of the spectrum is formed mainly by the vertices with degree
k = 2 and 3. The emergency of a dip at zero is a new feature of the spectrum.
In fact, there is a gap in the spectrum obtained in the in the framework of the
EM approach. The width of the gap increases with increasing P (1). One can see
this in the insert in Fig. 3b. The dead-end vertices also produce a delta peak at
λ = 0. The central peak corresponds to localized eigenstates.

Note that the appearance of the central peak and a dip is a general phenom-
ena in random networks with dead-end vertices. We also observed this effect in
the classical random graphs. Spectral analysis of the Internet topology on the
AS level revealed a central peak with a high multiplicity [17]. Thus the conjec-
ture that localized and extended states are separated in energy may well hold
in complex networks. A similar spectra was observed in many random systems,
for example, in a binary alloy [38]. In order to estimate the height of the delta
peak it is necessary to take into account all localized states. Unfortunately, so
far this is an unsolved analytical problem [17].

Finite-size effects — In the present paper we studied the spectral properties
of infinite random tree-like graphs. Numerical studies of large but finite random
trees demonstrate that the spectrum of a finite tree consists, speaking in general
terms, of a continuous component and an infinity of delta peaks. The components
correspond to extended and localized states, respectively [18]. There is a hole
around each delta peak in the spectrum. A finite regular tree has a spectral
distribution function which looks like a singular Cantor function [39]. These
results demonstrate that finite size effects in spectra may be very strong. In
particular, the finite size of a network determines the largest eigenvalue in its
spectrum. As was estimated in Sect. 5, the largest eigenvalue of the adjacency
matrix associated with a scale-free graph is of the order of k1/2

cut = k
1/2
0 N1/2(γ−1).

Spectrum of the transition matrix — In Fig. 4 we represent a spectrum of
the transition matrix P̂ defined by (30) for a tree-like graph with the scale-
free degree distribution P (k) ∝ k−γ at large degrees k ≥ 5. The spectrum
was calculated from (35) and (36) with the degree exponent γ = 2.1 and the
probabilities P (1), P (2), P (3) and P (4) taken from empirical degree distribution
of the Internet at the AS level [36].

The spectrum lies in the range |λ| ≤ λ2 < 1. In Fig. 4 we compare our results
with the spectrum of the transition matrix P̂ of the Internet obtained in [16,17].
Unfortunately, the data [16,17] are too scattered to make a detailed comparison
with our results. Nevertheless, one can see that the spectrum of P̂ of the tree-
like graph reproduces satisfactory the general peculiarities of the real spectrum.
Namely, the spectra have a wide dip at zero eigenvalue and a central delta-peak
[17]. The multiplicity of the zero eigenvalue have been estimated in [17]. For a
detailed comparison between the spectra, correlations in the Internet must also
be taken into account.

In order to reveal an effect of dead-end vertices we calculated spectra of P̂ on
a random tree-like graph with the Poisson and the scale-free degree distributions
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Fig. 4. Density of eigenvalues of the transition matrix P̂ defined by (30). (i) The
Internet data (the solid circles) and the results of simulations of a random scale-free
networks (the open squares) from [16]. (ii) The spectrum of the Internet extracted
from [17] (the stars). (iii) Our calculations (the solid line) with the degree distribution
P (k) = Ak−2.1 for k ≥ 4P (2) = 0.4 P (3) = 0.12. These parameters are taken from
[36]. The height of the central peak was estimated from [17]. The insert shows the
spectra of the transition matrix of a random tree-like graph with excluded dead-end
vertices: (i) a random tree-like graph with a scale-free degree distribution, γ = 3 , the
smallest degree k0 = 5, and 〈k〉 = 9.06 (the dashed line). (ii) A classical random graph
with 〈k〉 = 9.06 (the dotted line). (iii) A k−regular Bethe lattice with k = 9 (the solid
line).

γ = 3 in the case when dead-end vertices are excluded, that is P (1) = 0, and
〈k〉 = 9.06. These spectra are displayed in the insert in Fig. 4. In the whole range
of eigenvalues these spectra are very close to the spectrum of a k− regular Bethe
lattice with the degree k = 9. These calculations confirm the fact that it is the
dead-end vertices that produce the dip in the spectrum of the Internet.

9 Conclusions

The spectra of the adjacency and transition matrices of random uncorrelated
tree-like complex networks was studied. We have derived exact equations which
describe the spectrum of random tree-like graphs, and proposed a simple approx-
imate solution in the framework of the effective medium approach. Our study
confirms that spectra of scale-free networks as well as the spectra of classical
random graphs do not satisfy the Wigner law.

We have demonstrated that the appearance of a tail of the density of the
eigenvalues of sparse random matrices is a general phenomenon. The spectra
of classical random graphs (the Erdős-Rényi model) have a rapidly decreasing
tail. Scale-free networks demonstrate a power-law behavior of the density of
eigenvalues ρ(λ) ∝ |λ|−δ. We have found a simple relationship between the
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degree exponent γ and the eigenvalue exponent δ: δ = 2γ−1. We have shown that
correlations between degrees of neighboring vertices do not affect the power-law
behavior of eigenvalues. Comparison with the available results of the simulations
of the Barabási-Albert model and the analysis of the Internet at the Autonomous
System level shows that this relationship is valid for these networks. We found
that large eigenvalues λ  1 are produced by highly connected vertices with a
degree k ≈ λ2.

Many real-life scale-free networks demonstrate short-range correlations be-
tween vertices [40,41] and a decrease of a local clustering coefficient with in-
creasing degree of a vertex. Therefore, the relationship δ = 2γ − 1 between the
degree-distribution exponent γ and the eigenvalue exponent δ may also be valid
for these networks. We can conclude that the power-law behavior ρ(λ) ∝ λ−δ is
a general property of real scale-free networks.

Weakly connected vertices form the spectrum at small eigenvalues. Dead-end
vertices play a very special role. They produce localized eigenstates with λ = 0
(the central peak). They also produce a dip in the spectrum around the central
peak. In conclusion, we believe that our general results for the spectra of tree-like
random graphs are also valid for many real-life networks with a tree-like local
structure and short-range degree correlations.
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A Tractable Complex Network Model Based
on the Stochastic Mean-Field Model of Distance
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Abstract. Much recent research activity has been devoted to empirical study and
theoretical models of complex networks (random graphs) possessing three qualitative
features: power-law degree distributions, local clustering, and slowly-growing diameter.
We point out a new (in this context) platform for such models – the stochastic mean-
field model of distances – and within this platform study a simple two-parameter
proportional attachment (or copying) model. The model is mathematically natural,
permits a wide variety of explicit calculations, has the desired three qualitative features,
and fits the complete range of degree scaling exponents and clustering parameters; in
these respects it compares favorably with existing models.

1 Introduction

The topic of complex networks, more precisely the design and theoretical analysis
of stochastic models of large graphs which differ from the classical Erdős - Rényi
model, has attracted intense recent attention, surveyed from a statistical physics
viewpoint in [1–3] and from a rigorous mathematical viewpoint in [4].

Let us frame one aspect of this topic, by analogy. In freshman statistics
we learn that bivariate data (e.g. heights and weights of n individuals) can
be summarized by 5 summary statistics: average height, standard deviation of
height, average weight, standard deviation of weight, correlation coefficient. And
there is a 5-parameter probability model, the bivariate Normal, which (in several
precise senses) exactly corresponds to these particular summary statistics. In
the context of real-world graphs (where we will always regard the number n of
vertices as large), one could analogously seek a crude statistical description by
reporting a set of summary statistics. An evident choice is

– ∂ = average vertex-degree

and recently popular extra choices include

– an exponent γ characterizing power-law tail behavior of degree distribution
– a “clustering coefficient” κ measuring relative density of triangles
– the average distance �̄ between vertex-pairs.

These choices reflect and seek to quantify three qualitative features claimed to
hold in many interesting graphs (from WWW links to human social networks):
power-law degree distribution, local clustering of edges, and diameter growing
as O(log n). So from the viewpoint of classical mathematical statistics, it would

D.J. Aldous, A Tractable Complex Network Model Based on the Stochastic Mean-Field Model of
Distance, Lect. Notes Phys. 650, 51–87 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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be natural to seek a several-parameter stochastic model of random graphs whose
parameters could be readily identified with summary statistics of the kind above.
In more detail, we propose three desiderata1 for a satisfactory model, beyond
possessing the three qualitative features mentioned above:

– mathematical tractability: one can find reasonably explicit formulas for a va-
riety of quantities of interest

– fitting flexibility: by varying model parameters one can vary summary statis-
tics (like the 4 listed above) broadly through their possible ranges

– naturalness: the qualitative properties emerge from some simple underlying
mathematical structure rather than being forced by fiat.

Unfortunately no satisfactory such models are known. The statistical physics lit-
erature surveyed in [1,2] starts with a few elementary model-construction ideas
(such as the proportional attachment and small worlds models mentioned in
Sect. 6) and then explores numerous variations. Our purpose in this paper is to
introduce a new class of model we call metric copying,2 and to study a partic-
ular two-parameter model (mean-field simple copying, MFSC) within this class.
The description and analysis of the MFSC model involve somewhat more so-
phisticated mathematical visualization than has been used in previous complex
networks literature. So let us first address the first two desiderata by listing re-
sults for the model (Sect. 2), and only later (Sect. 3) describe the model. Section
4 derives most of the formulas in Sect. 2, and Sect. 5 exhibits further calculations.
A briefer account of the model, aimed at mathematicians, appears in [5].

1.1 Some Notation

P (·) denotes probability, E(·) denotes expectation, and var (·) denotes vari-
ance. We assume familiarity with elementary probability notions of random
variables and their distributions. We write Geo(p),Bin(m, p),Exp(µ),Poi(η) for
the geometric, binomial, exponential and Poisson distributions in their usual
parametrizations, reviewed below. We employ a “blackboard shorthand” of also
writing Geo(p) etc for a random variable with that distribution. Thus the el-
ementary reproductive property of the binomial distribution could be written
as

Bin(m1 +m2, p)
d= Bin(m1, p) + Bin(m2, p)

where the random variables on the right are independent, and where d= means
equality in distribution. The point of this notation is that, analogous to “com-
position of functions” in which we interpret exp((x − 1)2) as the composition
of the two functions exp(x) and (x − 1)2, we can “compose” (statisticians say
1 From an applied viewpoint, one could regard “fitting empirical data” as the single

criterion; we are of course taking a theoretical viewpoint
2 We use mathematical terminology: a metric is a distance function. Confusingly, some

engineers use “metric” to mean “summary statistic”
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“mix”) distributions. For instance (cf. (8) below), given a random variable Λ
with values in (0, 1) we can write Geo(Λ) for a random variable whose condi-
tional distribution given Λ = p is the Geo(p) distribution.

Review of elementary distributions.

P (Geo(p) = i) = (1− p)i−1p, i = 1, 2, . . .
EGeo(p) = p−1

P (Bin(m, p) = i) =
(
m

i

)
pi(1− p)m−i, i = 0, 1, . . . ,m

EBin(m, p) = mp (1)
var Bin(m, p) = mp(1− p) (2)
P (Poi(η) = i) = e−ηηi/i!, i = 0, 1, 2, . . .
EPoi(η) = η.

The Exp(µ) distribution has probability density function and expectation

f(x) = µe−µx, 0 < x <∞
EExp(µ) = µ−1.

A Poisson process of rate 1, say (0 < ξ1 < ξ2 < ξ3 < . . . ), is defined by the
property

ξ1, ξ2 − ξ1, ξ3 − ξ2, . . . are independent with Exp(1) distribution

and has the property

P (some ξi ∈ [x, x+ dx]) = 1 · dx, 0 < x <∞. (3)

1.2 Organization of Paper

Because the precise definition and a priori motivation of the model are lengthy
to explain, we start by emphasizing the a posteriori motivation, the fact that
the model permits many explicit calculations. In first reading the formulas in
Sect. 2, focus on the left sides of equations, indicating what quantities can be
calculated. The formulas on the right sides will be derived in Sect. 4.

2 Formulas

2.1 Key Methodology

Like other models involving vertices arriving and creating edges to existing ver-
tices, the MFSC model defines a directed acyclic (no directed cycles) random
graph Gn on n vertices. A key feature of the model is that there exists a well-
defined limit infinite rooted graph G∗

∞ which represents the n→∞ limit of Gn
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rooted at a uniform random (we say “typical”) vertex. So for “local” statistics
of Gn, one can give “exact formulas in the n → ∞ limit” by doing calcula-
tions within the limit structure G∗

∞, and this methodology is how we will derive
(Sect. 4) and interpret the formulas in Sects. 2.2–2.6 below.

Note that “rooting” is introduced merely as a convenient technical way to
deal with infinite graphs. By analogy, one could study two-dimensional space
without introducing the origin point (cf. Euclidean geometry) but for many
purposes an origin and induced coordinate system are helpful.

The MFSC model has two parameters: α, λ. In explicit formulas, we distin-
guish between a low clustering region defined by parameter ranges

0 < α < 1, 0 < λ ≤ 1/α [low] (4)

and the complementary high clustering region defined by αλ > 1; in the latter
case it is convenient to reparametrize by using η := λ−1 log(αλ) in place of α,
and the parameter ranges are

0 < η < 1, η + 1/λ < 1. [high] (5)

This distinction is purely notational; there is no intrinsic “non-analyticity” in
the model’s properties.

2.2 The Two Parameters Control Mean Degree and Clustering

(a). First consider Din and Dout, the random in-degree and out-degree of a
typical vertex. Then

EDin = EDout(= ∂, say) =

{
α

1−α [low]
η+1/λ

1−η−1/λ [high].
(6)

(b). Second, define a normalized clustering coefficient κcluster in words as

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

(see (44) for a more precise definition and derivation of (7)). Then

κcluster =

{
α(1−α)λ
2−α2λ [low]

(η+ 1
2λ )(1−η− 1

λ )
(η+ 1

λ )(1−η− 1
2λ ) [high].

(7)

By solving (6,7) we find (Sect. 4.6) that every pair of values of ∂, κcluster in the
complete range

0 < ∂ <∞, 0 < κcluster < 1

occurs for a unique parameter pair (α, λ) or (η, λ). Moreover the two regions can
be specified as
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0 < ∂ <∞, 0 < κcluster ≤ 1
∂+2 [low]

0 < ∂ <∞, 1
∂+2 < κcluster < 1 [high]

explaining our low and high clustering terminology. So the two model parameters
α, λ have fairly direct interpretations in terms of mean degree and clustering;
of course we could re-parametrize the model in terms of ∂ and κcluster, but the
internal mathematical structure is more conveniently expressed using the given
parameters.

2.3 Distributions of In- and Out-Degrees

(a). The distribution of Din is specified as

1 +Din
d= Geo(e−βT ) where T d= Exp(1) (8)

and where

β =
{

α [low]
η + 1/λ [high]. (9)

This works out explicitly as

P (Din ≥ d) =
Γ (d+ 1)Γ (1/β)
βΓ (d+ 1 + 1

β )
, d ≥ 0 (10)

P (Din = d) =
Γ (d+ 1)Γ (1/β)
β2Γ (d+ 2 + 1

β )
, d ≥ 0 (11)

with asymptotics

P (Din = d) ∼ β−2Γ (1/β) d−1− 1
β .

Formula (11) appears as a special case of recent results in two-parameter propor-
tional attachment models [6–8], but in fact is a famous 80-year old calculation
– see Sect. 4.2.
(b). The distribution of Dout is determined by the distributional equation

D
d=

{ ∑∞
i=1 Bin(1 +Di, αλe−λξi) [low]

∑Poi(η)
i=1 (1 +D′

i) +
∑∞
i=1 Bin(1 +Di, e−λξi) [high]

(12)

whereD, Di, D′
i, i ≥ 1 are i.i.d. random variables distributed asDout and where

0 < ξ1 < ξ2 < . . . are the points of a rate-1 Poisson point process on (0,∞).
We do not know how to extract a useful explicit formula from (12) but we

can compute moments. For instance
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var Dout =






α(1−α+α2λ/2)
(1−α)2(1− 1

2α
2λ) [low]

(η+ 1
2λ )(2−η− 1

λ )
(1−η− 1

2λ )(1−η− 1
λ )2 [high]

(13)

In the case λ = 1/α and in the limits λ → 0, λ → ∞ we get explicit formulas
for the distribution of Dout – see Sect. 4.3 – which show in particular that the
tail of Dout has geometric rather than power-law decay.
(c).

Din and Dout are independent. (14)

Because both Dout andDin can take the value 0, we see that P (Din+Dout =
0) > 0, implying that Gn will typically not be connected (see Sect. 2.7 for further
comments).

2.4 Densities of Induced Subgraphs

One of the major advantages of the model is that, for a fixed “small” graph G,
one can (in principle, and often in practice) calculate explicitly an “asymptotic
density” dens∞(G) interpreted as the limit

lim
n→∞

number of copies of G in Gn
n

= dens∞(G).

Precise definitions are fussy, and are deferred to Sect. 4.4, which also records the
explicit formulas we have found. Here let us point out the formula for triangles
K3:

dens∞(K3) =

{
α3λ

(1−α)(2−α2λ) [low]
(η+ 1

λ )(η+ 1
2λ )

(1−η− 1
λ )(1−η− 1

2λ ) [high].
(15)

The formula above is the key ingredient in the formula for κcluster. Recall the
verbal description of κcluster:

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

It is intuitively clear (and formalized at (40) that the asymptotic density for
occurrence of directed 2-paths v1 → v2 → v3, if one does not look whether
or not a third edge v1 → v2 is present, equals ∂2 (because of independence of
in-degree and out-degree at v2). So the verbal definition translates to

κcluster =
dens∞(K3)

∂2

and then (15) immediately gives formula (7) for κcluster.
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2.5 Triangle Density as a Function of Degree

The parameter κcluster gives an overall measure of triangle density. A more de-
tailed description is provided by statistics C(k), k ≥ 2 defined by

C(k) =
E(number of triangles containing a random degree-k vertex)(

k
2

) .

In principle the methods of this paper could be used to obtain an exact formula
for C(k), but we shall be content with outlining (Sect. 5.5) the tail property

C(k) ∼ 2β2

β − β2
× 1
k

as k →∞. (16)

See Sect. 6 for further comments.

2.6 Edge-Lengths

Our model has a “metric structure”, in that there is a distance dmetric(v, w)
between any two vertices which does not involve the realization of edges in
the random graph. So each edge (v, w) of the graph has a real-valued length
dmetric(v, w), and so a typical edge has a random length L. The probability density
function for L is given by the formula

f(x) =
1− α
α

∞∑

i=0

(i+ 1)Γ (α+ 3) (−λx)i
Γ (i+ α+ 3)

, 0 < x <∞ [low]. (17)

Mathematica gives an equivalent expression as a sum of incomplete hyperge-
ometric functions. One can readily observe that f(x) = exp(−(λ ± o(1))x) as
x→∞. In the underlying metric space, the number of vertices within distance
x of a typical vertex grows as ex. So the tail behavior of f(x) suggests

the chance that a vertex has an edge to its k’th nearest neighbor should
scale as k−λ−1

though we have not attempted detailed calculations to verify this suggestion.
Note this property appears without being explicitly built into the model.

2.7 Other Local Statistics

There are further questions, concerning exact behavior in the n → ∞ limit,
which are in principle solvable in terms of the limit network G∗

∞, but where we
have been unable to obtain usefully explicit answers. A major question concerns
the percolation probability

pperc(α, λ) = P (typical vertex is in infinite connected component of G∗
∞) (18)
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By analogy with classical facts about the Erdős - Rényi model, we expect that
above the percolation threshold, that is when pperc(α, λ) > 0, the random graph
Gn will have a giant component whose size Cn(α, λ) satisfies

n−1ECn(α, λ) → pperc(α, λ).

Unfortunately we do not see how to write pperc(α, λ) as a solution of any simple
equation. By studying an easier-to-analyze directed percolation problem, it is not
hard to show (Sect. 5.3)

if 2β − β2 > 1 then pperc(α, λ) > 0. (19)

2.8 Average Distance

In any graph, write dgraph(v, w) for the minimal number of edges in any path from
v to w. The diameter ∆ and the average vertex-vertex distance Λ are defined by

∆ = max
v,w

dgraph(v, w), Λ = avev,wdgraph(v, w).

In the context of a simple proportional attachment model it is known [9] that

E∆n, EΛn =
(1 + o(1)) logn

log log n
as n→∞.

It is natural to conjecture, but hard to prove, the same result for our model
(above the percolation threshold and restricted to the giant component). On the
other hand it seems likely that standard techniques of abstract mathematical
probability would be enough to show the weaker bound EΛn = O(log n) as n→
∞. Such questions cannot in principle be answered completely using G∗

∞.

2.9 Summary of Advantages and Disadvantages of the Model

The previous sections convey some advantages of the model:

– it has the three qualitative features desired in a complex network model
(power-law degree distribution, clustering, small diameter);

– it fits the complete possible range of mean degree (or scaling exponent) and
clustering parameters;

– it permits a broad range of explicit calculations.

So to be fair let us list some disadvantages from a modeling viewpoint.

– Gn is not connected (for large n); cf. Sect. 2.7;
– there is no power law for distribution of out-degree;
– in-degree and out-degree are independent;
– the scaling exponent for in-degree is determined by the mean degree; one

might prefer a model where these could be specified separately;
– in the n→∞ limit not every finite graph is possible as an induced subgraph

(Sect. 4.5).



A PWITy Complex Network 59

3 The Model

3.1 Metric Copying Models

Let us briefly outline a general modeling framework, metric copying models.
Each vertex v is a point in a metric space; that is, there is some real-valued
distance d(v, w) between any two vertices v, w. Given some rule for the positions
of successive vertices 1, 2, . . . , and given a function p : [0,∞) → [0, 1], we can
construct random directed graphs Gn inductively on n as follows. When vertex
n arrives, then
(i) for each directed edge (i, j) of Gn−1, a “copied” edge (n, j) is created with
probability p(d(n, i));
(ii) for each vertex i (1 ≤ i < n), a new edge (n, i) is created with probability
p(d(n, i));
(iii) the events above are independent, except that repeat edges are censored.

Imagine p(·) to be rapidly decreasing. A moment’s thought shows how this model
resembles proportional attachment models. An existing vertex v with in-degree
d has d+ 1 opportunities to acquire an in-edge, due to the next arriving vertex
being close to v or close to one of the d vertices with edges to v.

In principle one could study such models based on random points in d-
dimensional space, but within such settings it is notoriously hard to do ex-
plicit calculations (see e.g. [10] for different models of random graphs based on
d-dimensional random points), and the choice of d is arbitrary. We will avoid
both problems by using a well known (in other contexts) model which is loosely
interpretable as “random points in infinite-dimensional space”. Note that in d-
dimensional space, the number of points within distance r of a typical point
grows as rd; what will make our model “infinite-dimensional” is that this num-
ber grows as er.

For later use recall that a pre-metric d̄(i, j) is symmetric and strictly positive
for j �= i. A pre-metric can be used to specify a metric d(v, w) as the minimum,
over paths v = i0, i1, . . . , ik = w, of d̄(i0, i1) + d̄(i1, i2) + . . .+ d̄(ik−1, ik).

3.2 A d-Dimensional Analogy

As a final preliminary, the following analogy may be helpful. In d-dimensional
space Rd, take a cube [−n1/d/2, n1/d/2]d of volume n, and put n uniform ran-
dom points in that cube. This structure has a n → ∞ limit, the Poisson point
process in Rd with mean intensity 1 point per unit volume. Moreover the limit
process, which is a spatial point process on all of Rd, can be represented as the
distribution, at any fixed time, of a time-evolving process of points on all of Rd,
where the evolution rules are
(i) points move away from the origin as deterministic motion with exponential
rate 1/d; a point at position x at time t will be at position xe(t

′−t)/d at times
t′ > t.
(ii) New points arrive throughout Rd as a rate-1 space-time Poisson process; that
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is, the chance of a point arriving in a cube of volume dx during a time interval
dt equals 1 · dx dt.
Thus if one takes a volume-1 region of space at time t0, this space expands to
become volume et at time t0 + t, and the arrival rate per unit time within this
expanding volume is et at time t0 + t.

In the limit process, one may regard the “present time” as time 0, and regard
the process as having evolved3 over time −∞ < t ≤ 0. Particles at the present
time have ages which are independent Exp(1) random variables independent of
present positions; from the present configuration of positions and ages one can
deterministically reconstruct the past evolution of the process.

3.3 The Stochastic Mean-Field Model of Distance

Our model of an underlying metric space is specified by three rules.
(i) Point n arrives at time tn = log n.
(ii) At the arrival time tn, define the pre-distances (D̄(n, j; tn), 1 ≤ j ≤ n − 1)
from n to the earlier-arriving points to be independent random variables with
exponential, mean n, distribution.
(iii) Distances grow exponentially with time; D̄(n, j; t) = et−tnD̄(n, j; tn) for
t > tn.
So at time t there are n = �et� points, and the

(
n
2

)
pre-distances D̄(i, j; t), 1 ≤

i < j ≤ n) are independent random variables with exponential, mean et, distri-
bution. These particular pre-distances are an instance of a pre-metric, and this
pre-metric specifies a metric D(i, j; t), 1 ≤ i < j ≤ n). Write (Dt, 0 ≤ t < ∞)
for this process of arriving points and distances.

Here is a key feature of this construction. At time t pick a uniform random
point Vt as a “root”. Then there is a t → ∞ limit (in distribution) structure,
which is a metric space on a countable infinite number of points, one being dis-
tinguished as the root. The limit structure, called the PWIT, is described below.
The meaning of “limit” is that, for arbitrary fixed r < ∞, the configuration of
points in Dt within distance r of Vt converges in distribution to the configu-
ration of points of the PWIT within distance r of the root (this is local weak
convergence of random networks [11]).

3.4 The PWIT

The PWIT is defined by a construction, illustrated in Fig. 1 4. Start with a
single root vertex ∅. This root vertex is then given an infinite number of near
neighbors, and the edges from the root to the near neighbors are assigned lengths
according to a realization of a Poisson process (ξ∅i : 1 ≤ i < ∞) of rate 1 on
(0,∞). Now, recursively, each vertex v arising as a near neighbor of a previous
3 This model is reminiscent of the steady-state theory of the Universe advocated by

Fred Hoyle in the 1950s
4 Our figures are illustrations of the definitions, rather than honest Monte Carlo sim-

ulations
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∅

Fig. 1. The PWIT. Illustration of the vertices of the PWIT within a window of radius
3 centered on the root ∅. Lines indicate the near neighbor relationship, but are drawn
only when both end-vertices are within the window. Thus the four near neighbors of
∅ shown are at distances 0 < ξ∅

1 < ξ∅
2 < ξ∅

3 < ξ∅
4 < 3 from ∅, while there are an

infinite number of near neighbors of ∅ at distances greater than 3. Orientation of lines
in pictures is arbitrary. Labels a, b, c are included for later comparisons.

vertex is given an infinite number of near neighbors, and the edges to these near
neighbors of v are again assigned lengths according to an independent realization
of a Poisson process (ξvi : 1 ≤ i <∞) of rate 1. This procedure is then continued
ad infinitum. The resulting rooted infinite tree is a well defined random object,
called the Poisson weighted infinite tree (PWIT).

The distance D(v, w) between two vertices of the PWIT is just the sum of
edge-lengths along the path from v to w. Though we have drawn a tree in Fig. 1,
the lines merely indicate the near neighbor relationships; it is better to think
of the edges as absent while retaining the distances D(v, w). In this way we
may regard the vertices of the PWIT as an infinite-dimensional analog of the
d-dimensional Poisson point process in Sect. 3.2. Formula (29) later provides one
formalization of “infinite-dimensional”.
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The survey [11] gives a careful explanation of how the PWIT arises as a
limit of finite models such as Dt, and gives some applications to combinatorial
optimization5. The key point is that, for an arriving vertex Vt in Dt, the existing
vertices at smallest D̄-distances correspond in the limit to the near neighbors in
the PWIT. (Recall the Sect. 3.3 construction; we are repeating the “key feature”
from the last paragraph of that section.)

In the present setting, each point v of Dt has an “age” at time t, and in the
limit PWIT these ages are (exactly as in Sect. 3.2) independent Exp(1) random
variables, Av say. Thus if we write D∗

0 for the PWIT and Aroot for the age of the
root, then (given the other ages Av also) we can reconstruct the time-evolution
of a backwards space-time PWIT process (D∗

s , −Aroot ≤ s ≤ 0). Precisely, as s
runs backwards
(a) the edge-lengths ξ decrease exponentially; at time s < 0 the length is ξes;
(b) a vertex v and its incident edges are deleted at s = −Av.
Then D∗

s is defined as the connected component containing the root at time s.
This limit process relates to the finite process as follows. Let Ãt be the age (at
time t) of the randomly-chosen vertex Vt at time t. Then

(D∗(t)
t+s , −Ãt ≤ s ≤ 0) d→ (D∗

s , −Ãroot ≤ s ≤ 0) as t→∞ (20)

where D∗(t)
t+s is the configuration Dt+s rooted at Vt.

There is also a forwards space-time PWIT process (D∗
s , 0 ≤ s <∞) specified

as follows. Start with the PWITD∗
0 . At time s increases, all inter-vertex distances

increase at exponential rate 1. For each vertex v present at time s, and each
0 < r <∞, there is (as explained below) chance 1 · dr ds that during [s, s+ ds]
a new vertex v′ will appear at distance ∈ [r, r + dr] from v as a near neighbor
of v. Along with this vertex (which has current age 0) is an independent copy of
the PWIT rooted at v′, whose other vertex-ages are independent Exp(1). The
relation between the finite-t and the limit process is analogous to (20):

(D∗(t)
t+s , 0 ≤ s <∞) d→ (D∗

s , 0 ≤ s <∞) as t→∞. (21)

Here is the calculation leading to the coefficient “1” in

there is chance 1 · dr ds that during [s, s+ ds] a new vertex v′

will appear at distance ∈ [r, r + dr] from v as a near neighbor of v . (22)

In the process (Dt), during time [t+s, t+s+ds] about et+sds vertices arrive; for
each existing vertex, the chance an arriving vertex is within D̄-distance [r, r+dr]
equals e−(t+s) exp(−re−(t+s))dr. So the chance in (22) equals

et+sds× e−(t+s) exp(−re−(t+s))dr ≈ 1× dr ds.
5 See also [12] for novel scaling exponents arising in the study of the mean-field trav-

eling salesman problem.
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Fig. 2. The space-time PWIT process. Regarding Fig. 1 as showing the PWIT
at a time t+, Fig. 2 shows the space-time PWIT at an earlier time t− at which only
three vertices a, b, c of the vertices in the Fig. 1 window have arrived. Figure 2 shows
smaller windows centered on a and on c. The other vertices in Fig. 2, and the near
neighbor relation shown by lines, are still present at time t+, but are not visible in
Fig. 1 because the expansion of distances has placed them outside the Fig. 1 window.

Recursive Self-Similarity. Implicit in the model is the fact that the “geome-
try” of the space seen by a newly-arriving particle v∗ is statistically the same
as the geometry seen by a typical existing particle. This is the familiar PASTA
(Poisson arrivals see time averages) property in queuing theory. In particular,
at the arrival time of v∗ the geometric components containing the different near
neighbor vertices v1, v2, . . . are independent copies of the PWIT. This recur-
sive self-similarity property of the PWIT process is fundamental to its analytic
tractability.

Figure 2 and its legend may be helpful.

3.5 The MFSC Model

The process (Dtn , n = 1, 2, 3, . . . ) of arrivals and inter-point distances described
in Sect. 3.3 defines an “underlying geometry”; we now define the random graph
process (Gn, n = 1, 2, 3, . . . ) which is the subject of this paper. Fix two parame-
ters 0 < α <∞ and 0 < λ <∞. Write

p(x) = min(1, αλe−λx), 0 ≤ x <∞. (23)

We now implement a version of the “metric copying” idea from Sect. 3.1. G1
consists of vertex 1 and no edges. When vertex n arrives at time tn = log n, then
(i) for each directed edge (i, j) of Gn−1, a “copied” edge (n, j) is created with
probability p(D̄(n, i; tn));
(ii) for each vertex i (1 ≤ i < n), a new edge (n, i) is created with probability
p(D̄(n, i; tn));
(iii) the events above are independent, except that repeat edges are censored.
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Note that we use D̄ instead of D in determining attachment probabilities (be-
cause D̄-near vertices at finite time correspond to the near neighbors in the
limit PWIT). We call (Gn, n = 1, 2, 3, . . . ) the mean-field simple copying (MFSC)
model.

Our focus in this paper is the study of the MFSC model using its limit
structure. Just as the t→∞ limit of the time-t “geometry” Dt is the PWIT, we
can consider Gt as a structure built over Dt, and we get a limit random directed
graph G∗

∞ as a structure built over the PWIT. The structure of G∗
∞ near the root

is exactly the t→∞ limit structure of Gt relative to a random (“typical”) vertex
Vt, and so we can obtain (in principle) a wide variety of asymptotic results about
Gt by doing calculations upon G∗

∞. The only difficulty in this methodology is that
we don’t have a useful explicit description of G∗

∞. Instead, we can consider the
space-time limits (20,21) jointly with (Gt); then in the limit we get the space-time
PWIT processes existing jointly with a random graph process (G∗

∞(s)), where
now G∗

∞(0) = G∗
∞. The process (G∗

∞(s)) evolves with s and the space-time PWIT
process by the rules implied by (i)-(iii) above.

Precisely, the evolution rules (illustrated by Figs. 3–6) are

when a new vertex v∗ arrives in the forwards space-time PWIT process
at time s, it has near neighbors (v1, v2, . . . ) at distances (ξ1, ξ2, . . . ), and
G∗

∞(s) has put a random graph structure on the geometric component
containing each vi. For each i and each directed edge (vi, w), a new edge
(v∗, vi) or (v∗, w) is created with probability p(D(v∗, vi)), independently
for different possible edges.

Recursive Self-Similarity. What makes this process tractable is that the recur-
sive self-similarity property of the PWIT extends to the random graph process;
each vi defines a geometric component and a random graph on that component,
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Fig. 3. The graph process G∗
∞(t−) on the realization of the space-time PWIT at time

t− in Fig. 2. For the graph process we show all edges with either end-vertex within the
window. The following figures show the evolution of G∗

∞(t) over t− < t ≤ t+.
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Fig. 4. Figures 4–6 build up the graph G∗
∞(t+) on the time-t+ PWIT in Fig. 1. Figure 4

here shows only the edges that were present at time t−, that is the edges shown in Fig. 3.
Some edges crossing outside the window have been redrawn at different angles for later
convenience.
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Fig. 5. Suppose in Fig. 1 that the center vertex ∅ arrives at time t+; Fig. 5 illustrates
the graph just before that arrival. Since the time-t− configuration in Fig. 3, more
vertices have arrived and formed edges, and distances have expanded.
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Fig. 6. Vertex ∅ arrives at time t+ with near neighbors d, e, a, f, . . . . Out-edges from ∅
appear according to the metric copying scheme of Sect. 3.1 with p(x) given by (23). So
for each near neighbor v and each existing edge (v, w), an edge (∅, v) or (∅, w) appears
with probability p(D(∅, v)). In this realization, edges appeared to the near neighbors
d and a, and two other edges (one from d and one from e) were copied.

and these are independent copies of the joint distribution of the PWIT and G∗
∞.

This property is used extensively in the calculations in Sect. 4.

3.6 Reparametrization and Extreme Cases

Although the MFSC model makes sense for the full range (0 < α, λ < ∞) of
parameters, we will only consider the ranges (4,5) for which the limit mean
degree is finite.

Note that definition (23) of p(x) can be rewritten as

p(x) = αλe−λx, 0 < x <∞ [low] (24)

p(x) =
{

1 0 < x ≤ η
e−λ(x−η) η < x <∞ [high] (25)

where the reparametrization η := λ−1 log(αλ) when αλ > 1 is used in (25). In
the two extremes of clustering, our model simplifies in different ways. For fixed
α, when n is large and α is small, the model resembles the following variant of
the proportional attachment model:

An arriving vertex has a Poi(α) number of out-edges, whose end-vertices
are chosen with probabilities proportional to 1+ in-degree.
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At the other extreme, for fixed η our model makes sense with λ = ∞, interpreting
(25) to mean p(x) = 0, x > η. In this case the model becomes, for large n,

An arriving vertex v∗ chooses at random a Poi(η) number of neighbors
vj , and creates edges (v∗, vj), and also copies each existing edge (vj , w)
to a new edge (v∗, w).

Clearly in the former limit we have κcluster = 0 and in the latter limit we have
κcluster = 1.

4 Calculations

In Sect. 4 we derive the formulas stated in Sects. 2.2–2.6. As described in
Sect. 3.5, our methodology is to regard Din and Dout as the (random) in-degree
and out-degree of the root in G∗

∞, and to study this using the time-dynamics of
G∗

∞(s) derived from the space-time PWIT process and the evolution rules of the
graph process.

4.1 Two Helpful Calculations

We will make frequent use of the next lemma.

Lemma 1. For integers u ≥ 1 write

Z(u) =
∞∑

i=1

pu(ξi) =
∞∑

i=1

[
min(1, αλe−λξi)

]u
.

Then

βu := EZ(u) =
{
u−1αuλu−1 [low]
η + 1

uλ [high] (26)

var Z(1) =
{ 1

2α
2λ [low]

η + 1
2λ [high]. (27)

In particular, β := β1 < 1 for all parameter values.

Proof. We will do the low clustering density case – the high density case is
similar. By (3) the chance that some ξi falls into an interval [x, x+ dx] is dx, so

βu =
∫ ∞

0
(αλe−λx)u dx = αuλu

∫ ∞

0
e−uλx dx = αuλu/(uλ).

Moreover, there is a general formula for variance of a sum over a Poisson (rate
1) process (ξi):

var

(
∑

i

w(ξi)

)
=

∫ ∞

0
w2(x) dx
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and applying this formula for Z(1) gives

var Z(1) =
∫ ∞

0
(αλe−λx)2 dx = α2λ2/(2λ).

We next recall a classical result. Fix 0 < θ < ∞. Set N(0) = 1 and let
(N(t), t ≥ 0) be the Yule process of rate θ, that is the Markov process which
changes only by +1 steps and for which

P (N(t+ dt) = n+ 1|N(t) = n) = θn dt.

A textbook result (e.g. [13] sec. 5.3) says

N(t) d= Geo(e−θt). (28)

Note that in the PWIT, if N(r) is the number of vertices within distance r
from the root (counting the root itself), then the process (N(r), r ≥ 0) is a Yule
process of rate 1, because for a vertex v at distance r′ < r, the chance of v having
a near neighbor at distance ∈ [r − r′, r − r′ + dr] equals 1 · dr. So in particular,

EN(r) = EGeo(e−r) = er. (29)

4.2 Distribution of In-Degree

We start by giving the derivation of

1 +Din
d= Geo(e−βT ) where T d= Exp(1) (8)

for β = EZ(1). In the forwards space-time PWIT process, let N(t) be 1+ the in-
degree of the root, when the root has age t. Thus N(t) counts the set of vertices
v for which v → root is an edge, or v = root. When a new vertex v′ arrives with
some v in this set as a near neighbor, at distance r, there is chance p(r) for the
root’s in-degree to increase by 1, and so from the dynamics (22) of the forwards
space-time PWIT process we see that N(t) is the Yule process of rate

β =
∫ ∞

0
p(r) dr.

Use formula (28) and the fact that the age of the root of the PWIT has Exp(1)
distribution to obtain (8).

We can quickly use (8) to calculate EDin.

1 + EDin = E(E(Geo(e−βT )|T ))
= EeβT because EGeo(p) = p−1

=
∫ ∞

0
eβte−t dt =

1
1− β

giving EDin = β
1−β as at (6). We now calculate the distribution of Din in the

same way. Because P (Geo(p) ≥ i+ 1) = (1− p)i, i ≥ 0 we have
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P (Din ≥ i) = EP (Din ≥ i|T )
= EP (1 +Din ≥ i+ 1|T )

= E
(
1− e−βT )i

=
∫ ∞

0
(1− e−βt)ie−t dt

= 1
β

∫ 1

0
(1− s)is

1
β−1

ds setting s = e−βt

=
1
β

Γ (i+ 1)Γ ( 1
β )

Γ (i+ 1 + 1
β )

using the Beta integral formula.

This is (10), and (11) follows.
Historical note. Yule [14] introduced what we now call the Yule process in

1924 in the context of a model for evolution of new species. It is interesting that
his central mathematical results are the Geometric distribution (28) [his (5)]
and the calculation starting from our (8) [representing, for Yule, a distribution
of numbers of species in a typical genus] of the explicit distribution (11) [his (12)].
After 80 years we have slicker notation but the argument is the same! Moreover
Yule’s motivation was to find a simple model yielding a power-law distribution
for number of species per genus, just as the motivation for the recent literature on
proportional attachment models was to find a simple model yielding power-law
degree distributions.

4.3 Distribution of Out-Degree

We will first derive (12). Because the out-edges are formed on arrival, we may
suppose the root of the PWIT has just arrived. Consider a near neighbor v′

at distance r. For each out-edge of v′, and for v′ itself, there is chance p(r)
that a corresponding out-edge is created at the root, giving a total number
Bin(1 + D(v′), p(r)) of out-edges, where D(v′) is the out-degree of v′. The
recursive self-similarity property (end of Sect. 3.5) implies that the (D(v′) :
v′ near neighbor of root) are i.i.d. random variables distributed as Dout, and in-
dependent of their distances (ξi) from the root. Rewriting (D(v′)) as (D(i)) in
increasing order of distance from root,

Dout =
∞∑

i=1

Bin(1 +D(i), p(ξi)) (30)

which becomes (12).
We now turn to the issue of using (30) to get information about the distri-

bution of Dout. Because a directed edge contributes equally to total in-degree
and to total out-degree, we know a priori that EDout must equal EDin, but let
us first check that we can indeed use (12) to show EDout = β/(1− β). Because
(1) EBin(n, p) = np we see

EBin(1 +Di, p(ξi)) = (1 +EDout) Ep(ξi).
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So (30) gives

EDout = (1 + EDout) · EZ(1) = (1 + EDout)β

giving EDout = β/(1− β).
Variance. The calculation of the variance var Dout provides a textbook il-

lustration of the utility of the general conditional variance formula

var X = Evar (X|Y ) + var E(X|Y ).

We give the details in the low density case; the high density case is similar. In
the defining equation (12) write D for Dout and write D and Ξ for the random
sequences (Di) and (ξi). Because (2) var Bin(n, p) = np(1− p) we have

var (D|D, Ξ) =
∑

i

(1 +Di)αλe−λξi(1− αλe−λξi).

Recursive self-similarity, as used above, implies independence of the i.i.d. se-
quence (Di, i ≥ 1) and the Poisson process (ξi, i ≥ 1). So

Evar (D|D, Ξ) = (1 + ED)(EZ(1) − EZ(2))

=
α(1− αλ

2 )
1− α using (6) and (26). (31)

Next consider the conditional expectation

E(D|D, Ξ) =
∑

i

(1 +Di)αλe−λξi = W, say.

We will calculate var W by using the conditional variance formula. Because

var (W |Ξ) =
∑

i

(var D) · α2λ2e−2λξi

we have

Evar (W |Ξ) = (var D) · EZ(2) = (var D) · α2λ/2. (32)

And since E(W |Ξ) = (1 + ED)Z(1) = 1
1−αZ

(1) we have

var E(W |Ξ) =
1

(1− α)2
var Z(1) =

α2λ

2(1− α)2
. (33)

Using the conditional variance formula twice

var D = Evar (D|D, Ξ) + var W
= Evar (D|D, Ξ) + Evar (W |Ξ) + var E(W |Ξ)

=
α(1− αλ

2 )
1− α + (var D) · α2λ/2 +

α2λ

2(1− α)2
.
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Solving gives the equation (13) for var Dout.
Special cases. (a). Fix α. Because p(x) ≤ αλ, in the λ→ 0 limit we can apply

the Poisson limit of Binomials result to the defining equation (12) to obtain (cf.
Sect. 3.6)

(in λ→ 0 limit) Dout
d= Poi(α). (34)

(b). Fix η. In the λ → ∞ limit we can use the limit process of Sect. 3.6 to
show that 1+Dout has the distribution of the total population size in a Galton-
Watson branching process6 with Poi(η) offspring distribution. This is (see e.g.
[15]) the Borel-Tanner(η) distribution

(in λ→∞ limit) P (1 +Dout = d) =
(ηd)d−1e−ηd

d!
, d ≥ 1. (35)

(c). In the case αλ = 1 it turns out (an argument is sketched in Sect. 5.4)

1 +Dout
d= Geo(1− α). (36)

Independence of in-degree and out-degree. This independence, noted at (14),
follows from the fact that in the forwards space-time PWIT process the out-
degree of the root is determined at the arrival time of the root vertex; the
subsequent evolution of the process of in-edges is clearly independent of the
state of the graph immediately after arrival.

4.4 Densities of Induced Subgraphs

Here we give details of the definition and interpretation of “density of induced
subgraphs” mentioned in Sect. 2.4, and list explicit formulas.

Let G and G be finite directed acyclic graphs; think of G as small and G as
large. Define “density of G as an induced subgraph of G” by

dens(G|G) =
#{V ⊂ G : V isomorphic to G}

#{ vertices of G}

where # denotes cardinality (“number of”) and V denotes a vertex-subset of
G with its induced subgraph. See Fig. 7, where there are 3 such vertex-subsets
{a, b, e}, {b, c, e}, {c, d, e} and so where dens(G|G) = 3/5.

We want to study n→∞ limits of dens(G|Gn) in our MFSC random graph
model (Gn), for fixed G. To use our methodology we must first rephrase the
definition of dens(G|G) in terms of the rooted graph G∗ obtained by giving G a
uniform random root. For such G∗, and for an arbitrarily-rooted directed graph
G∗, define a random variable

6 A population process starting with one individual in generation 0, individuals having
i.i.d. random numbers of offspring in successive generations
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Fig. 7. Two rootings G∗
1, G

∗
2 of a graph G.

X(G∗|G∗) = number of vertex-subsets V of G∗ including the root such
that G∗ restricted to V is isomorphic to G∗ via a root-preserving isomor-
phism.

The randomness arises only from choice of root of G∗; notation X has no special
significance except to distinguish this from simpler random variables.

It is an easy fact that

dens(G|G) =
EX(G∗|G∗)
ι(G∗)

(37)

where G∗ is G with an arbitrary choice of root, and where ι(G∗) ≥ 1 is the num-
ber of different root-choices which would give a rooted graph isomorphic to this
particular choice. Rather than write a formal proof, let us just illustrate identity
(37) using Fig. 7. For the choice of root giving G∗

1, the number of isomorphic
vertex-subsets V of G∗ equals 2 (resp. 1) if the root of G∗ chances to be b (resp.
d), and so EX(G∗

1|G∗) = 3/5. For the choice of root giving G∗
2, the number of

isomorphic vertex-subsets V of G∗ equals 1 (resp. 2, 3) if the root of G∗ chances
to be a (resp. c, e), and so EX(G∗

2|G∗) = 6/5. Since ι(G∗
1) = 1 while ι(G∗

2) = 2,
we have checked identity (37) in this example.

Note that in Fig. 7, the induced subgraph on {a, b, c} is not isomorphic to
G because of the extra edge a → c. Obviously we can make parallel definitions
allowing extra edges (pedantically: replace “isomorphism” by “vertex-bijection
and edge-surjection”) and we write dens (G|G) and X̄(G∗|G∗) in this setting.
For instance, in Fig. 7 we have dens (G|G) = 4/5 and EX̄(G∗

1|G∗) = 4/5.
The point of all this is that the definition of X(G∗|G∗) makes sense when G∗

is a rooted infinite graph. The key methodology in our analysis of the MFSC
model (Gn) is that the randomly-rooted G∗

n converge locally to a limit random
infinite rooted graph G∗

∞, implying via (37) that

dens(G|Gn) → EX(G∗|G∗
∞)

ι(G∗)
:= dens∞(G), say. (38)

In parallel.

dens (G|Gn) → EX̄(G∗|G∗
∞)

ι(G∗)
:= dens∞ (G), say. (39)

In Sects. 4.5 and 5.2 we calculate dens(G) for several cases of G; let us record
the formulas below. Note that limit densities may be infinite, in which cases we
will point out the conditions on parameters needed for finiteness.
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(a). For a directed path πr with r ≥ 1 edges,

dens∞ (πr) = ∂r. (40)

(b). For the complete directed acyclic graph Kr on r ≥ 2 vertices, (that is,
vertices {1, 2, . . . , r} and edges i→ j for 1 ≤ i < j ≤ r),

dens∞(Kr) =
r−1∏

u=1

βu
1− βu (41)

where β1 = β and for general u ≥ 1

βu :=
{
u−1αuλu−1 [low]
η + 1

uλ [high]. (42)

In particular, for the case of triangles K3 we have explicitly

dens∞(K3) =

{
α3λ

(1−α)(2−α2λ) [low]
(η+ 1

λ )(η+ 1
2λ )

(1−η− 1
λ )(1−η− 1

2λ ) [high].
(43)

As already mentioned in Sect. 2.4, the formula above is the key ingredient in the
formula for κcluster. Recall its verbal description

The proportion of directed 2-paths v1 → v2 → v3 for which v1 → v3 is
also an edge.

This becomes

κcluster =
dens∞(K3)

dens∞ (π2)
(44)

and then (40,44) immediately give the formula (7).
(c). For a directed path πr with r ≥ 1 edges,

dens∞(πr) = δ

(
β1 − β2

(1− β1)(1− β2)

)r−1

. (45)

(d). For the complete bipartite directed graph K2,2, for β2 <
1
2 (which always

holds in the low density case)

dens∞ (K2,2) =
∂β2(β2 + 1

2∂β)
(1− 2β2)(1− β2)

. (46)

(e). In principle one can calculate dens∞(G∗) for any G∗, but in practice it is
not clear to what extent useful explicit formulas can be found – see Sect. 4.5
for further discussion, and for the observation that certain graphs G∗ have
dens∞(G∗) = 0, “asymptotically negligible density”.
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4.5 Densities of Induced Subgraphs: Easy Explicit Formulas

Recall the basic result (38) on subgraph density:

dens(G|Gn) → EX(G∗|G∗
∞)

ι(G∗)
:= dens∞(G)

where G∗ is an arbitrary rooting of G. In calculating the right side, to simplify
notation we write

χ(G∗) = EX(G∗|G∗
∞)

and similarly for χ̄(·) and X̄(·) and dens (G).
First consider πr, the directed path with r edges, rooted at the last-arriving

vertex, which we will call the head. Clearly χ(π1) = EDout = ∂. Let us write out
the (rather obvious) inductive argument for calculating χ̄(πr). Whether or not
the root vertex of G∗

∞ is the head of a r-path is determined at its arrival time.
Consider a near neighbor vi of the root, at distance ξi. The expected number of
r − 1-paths headed by vi equals χ̄(πr−1). So the expected number of r-paths of
the form root→ vi → . . . equals χ̄(πr−1)×P ((root, vi) is edge of G∗

∞). Summing
over i gives

χ̄(πr) = χ̄(πr−1)× EDout = χ̄(πr−1)× ∂

and so χ̄(πr) = ∂r by induction. This is formula (40).
The result for the complete directed graph Kr on r vertices is similar. For

r = 2 we have χ(K2) = χ(π1) = ∂ and so to establish formula (41) by induction
it is enough to show

χ(Kr+1) = χ(Kr)× βr
1− βr . (47)

In the forwards space-time PWIT process, consider a vertex-set Sr isomorphic
to Kr, headed by its latest-arriving vertex v∗. At time t after the arrival of v∗,
let Nt = 1+ the number of Kr+1-subgraphs of the forwards space-time PWIT
process which are of the form {v} ∪ Sr for some v; regard the “+1” as counting
Sr itself. Then Nt is a Yule process of rate

E
∑

i

pr(ξi) = βr (48)

because for each vertex v counted in Nt, a new vertex v′ arriving with near
neighbor v at distance x has chance [p(x)]r to create the r edges needed to
make {v′} ∪ Sr be a Kr+1 subgraph. Moreover these are the only ways in which
a new Kr+1 of the form {v′} ∪ Sr can be formed. By the Yule formula (29)
Nt

d= Geo(exp(−tβr)). Now regard Kr+1 as rooted by its second-latest arriving
vertex. In G∗

∞ the root has age T d= Exp(1). At its arrival time the root headed



A PWITy Complex Network 75

some random number of Kr’s, with mean χ(Kr), so by considering the mean
number of Kr+1’s at the present time

χ(Kr+1) = χ(Kr)× (ENT − 1)
= χ(Kr)× (E exp(T βr) − 1)

= χ(Kr)×
(

1
1− βr − 1

)

giving (47).
Other subgraphs. The derivations of formulas (45,46) dealing with paths and

K2,2 are relegated to Sects. 5.1 and 5.2.
For the graph out− starr consisting of r out-edges at a root, it is clear that

χ̄(out− starr) = E

(
Dout
r

)

and similarly

χ̄(in− starr) = E

(
Din
r

)
,

and these can in principle be evaluated using (12,8).
Some subgraphs have density zero.

�
��

�
�


�
�


�
��

�

�

�

�

It is easy to see that the graph G∗ above (where no “vertical” edge is present)
has χ(G∗) = 0.

4.6 Reparametrization

Writing α, λ in terms of ∂, κ = κcluster by solving (6,7) gives the formulas

α = ∂
∂+1

λ = 2(1+ 1
∂ )2

1+ 1
∂κ

}
0 < κ ≤ 1

∂ + 2
(49)

η = ∂((∂+2)κ−1)
(∂+1)(1+∂κ)

λ = (∂+1)(1+∂κ)
2∂(1−κ)

}
1

∂ + 2
< κ < 1. (50)
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4.7 Edge-Lengths

The previous calculations have not made very extensive use of the time-dynamics
of the forwards space-time PWIT process, and in particular have not used the
fact that edge-lengths grow exponentially at rate 1. To derive the formula (17)
for edge length density we do need to exploit such time-dynamics. We consider
only the low-density case; the high density case is more complicated because the
distribution in (ii) below is no longer exponential.

Consider the lengths of the in-edges at a particular vertex v0. Following a
tradition in mathematical probability, we visualize an in-edge of length � as a
“particle” at position � on a line; we also put a particle at position 0 to represent
the vertex v0 itself. If we start time τ with τ = 0 at the arrival time of v0, then
the evolution of the “particle process” can be specified as follows.
(i) There is a particle at position 0 at all times τ ≥ 0.
(ii) For each particle (at position x at time τ , say), at stochastic rate α per unit
time a new particle appears at position x+ Exp(λ).
(iii) particle positions increase deterministically at exponential(1) rate: a particle
at x at time τ will be at xeτ0−τ at time τ0 > τ .
Rule (ii) derives from (22): for an existing edge (v′, v0), a new vertex arriving at
distance r from near neighbor v′ creates an edge to v0 with probability p(r), so
the rate at which each existing edge is copied equals

∫ ∞
0 p(x) dx = α; moreover

conditional on copying, the distance r has Exp(λ) distribution, and so the length
of the new edge equals the length of the old edge +Exp(λ).

To analyze this particle process of edge lengths, define

G(τ, x) = E(number of edges of length > x at time τ)

so that

g(τ, x) = − d

dx
G(τ, x) = mean edge-length density at time τ .

We shall study

f(x) dx = E(number of in-edges at a typical vertex with length ∈ [x, x+ dx]).

Because the age of a typical vertex has Exp(1) distribution, f(x) can be written
as

f(x) =
∫ ∞

0
g(τ, x)e−τ dτ.

The verbal description of the particle process leads to the equation

d

dτ
G(τ, x) = xg(τ, x) + α

∫ x

0
g(τ, y)e−λ(x−y) dy + αe−λx.

Here the first term on the right expresses the deterministic exponential growth,
the second term expresses birth of particles to parents not at 0 (copying of
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existing edges) and the third expresses births to the 0-particle (new edge to v0).
Multiply the terms of the equation by e−τ and integrate out τ ; noting

∫ ∞

0

d

dτ
G(τ, x)e−τ dτ =

∫ ∞

0
G(τ, x)e−τ dτ = F (x), say,

we obtain

F (x) = xf(x) + α
∫ x

0
f(y)e−λ(x−y) dy + αe−λx. (51)

Differentiate: −f = (xf)′ + αf − λα ∫ x
0 f(y)e

−λ(x−y) dy − λαe−λx.
Rewrite with the integral term on the left, and then substitute the integral term
by the expression implied in (51):

λ(−xf − αe−λx + F ) = f + (xf)′ + αf − λαe−λx.
Differentiate: λ(−(xf)′ + λαe−λx − f) = f ′ + (xf)′′ + αf ′ + λ2αe−λx.
Tidy: (xf)′′ + λ(xf)′ + (1 + α)f ′ + λf = 0.
Look for a series solution f(x) =

∑∞
n=0 anx

n. Equating coefficients of xn:

(n+ 2)(n+ 1)an+1 + λ(n+ 1)an + (1 + α)(n+ 1)an+1 + λan = 0.

That is,

an+1

an
=

−λ(n+ 2)
(n+ 1)(n+ 3 + α)

and so

an =
(−λ)n(n+ 1)Γ (3 + α)

Γ (n+ 3 + α)
a0.

One can directly check that f(0+) = 1, identifying a0 = 1. Because the mean
in-degree is α/(1− α), the probability density function of a typical edge-length
must be 1−α

α f(x), establishing (17).

5 Further Calculations

5.1 Yule Arguments for Subgraph Density

The next Lemma abstracts the Yule process arguments used in Sect. 4.5. Recall
the reformulation there of limit subgraph density in terms of χ(G) and χ̄(G).

Lemma 2. Let G0 be a rooted directed acyclic graph such that each vertex is a
descendant of the root (Fig. 8). Let q be the out-degree of the root. Let G1 be a
directed acyclic graph obtained from G0 by adding an extra vertex w and edges
(w, root) and c further edges from w to some children of the root (so 0 ≤ c ≤ q).
Then
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Fig. 8. Illustration of Lemma 2.

χ̄(G1)/χ̄(G0) =
βc+1

1− βc+1
. (52)

χ(G1)/χ(G0) =
q−c∑

j=0

(−1)j
(
q − c
j

)
βc+1+j

1− βc+1+j
. (53)

(54)

In particular, if q = c then

χ(G1)/χ(G0) =
βc+1

1− βc+1
. (55)

As a quick application let us derive formula (45) for χ(πr) for the directed path
πr on r edges. Applying (53) with q = 1, c = 0,

χ(πr+1)/χ(πr) =
β1

1− β1
− β2

1− β2
=

β1 − β2

(1− β1)(1− β2)
.

Because χ(π1) = ∂ and ι(πr) = 1 we obtain formula (45).
Proof of Lemma 2. We will do the harder case (53). Consider a copy of G0

(i.e. an isomorphic subgraph) at the root of the PWIT. In the space-time PWIT
process, let M(t) be the number of copies of G1 which contain the given copy of
G0, at time t after the arrival of the root. Since the age T of the root has Exp(1)
distribution,

χ(G1)/χ(G0) = EM(T ).

Write S for the set of children of the root in G0 and write A for a subset of S.
Consider the process of arriving vertices v which form an edge to the root.

Such a v has a near neighbor v′, where either v′ = root or (v′, root) is already
an edge. Writing A(v′) ⊆ S for the set of children of the root to which v′ creates
an edge, then A(v) ⊆ A(v′). We can now write

M(t) = #{v : (v, root) is an edge, A(v) = A1}
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where A1 is the set of children of the root of G1 to which w has an edge.
In representing M(t) as above, we are using the hypothesis “each vertex is a
descendant of the root” to ensure that, in a subgraph of the space-time PWIT
isomorphic to G1, the last-arriving vertex must be w.

Consider a sequence root = v(0), v(1), . . . , v(i) of arriving vertices such that
each vertex v(k) arrives at distance xk from its near neighbor v(k−1). The
chance that each v(k) makes an edge to the root and to each child in A1

equals
∏i
k=1 p

c+1(xk). The chance that furthermore no other child in S ac-
quires an edge to v(i) equals (1 − ∏i

k=1 p(xk))
q−c. By considering the times

0 < t1 < t2 < . . . < ti < t of arrivals of v(i),

EM(t) =
∞∑

i=1

∫

0<t1<...<

∫

ti<t

dt1 . . . dti

∫ ∞

0
. . .

∫ ∞

0
dx1 . . . dxi pc+1(x)(1− p(x))q−c

where p(x) =
∏i
k=1 p(xi). Because pc+1(x)(1 − p(x))q−c =

∑q−c
j=0(−1)j

(
q−c
j

)

pc+1+j(x) and
∫ ∞
0 pc+1+j(xk) dxk = βc+1+j ,

EM(t) =
∞∑

i=1

ti

i!

q−c∑

j=0

(−1)j
(
q − c
j

)
βic+1+j

=
q−c∑

j=0

(−1)j
(
q − c
j

)
(exp(βc+1+jt)− 1).

Calculating EM(T ) =
∫ ∞
0 e−tEM(t) dt establishes (53).

5.2 Subgraph Density of K2,2

We have not pursued general methods for induced subgraph density beyond
Lemma 2, but the argument that follows for the particular case of K2,2, based
on splitting into two cases, could clearly be applied somewhat more widely.

We first quote

Lemma 3.

E

(
Geo(p)

2

)
= p−2 − p−1 (56)

E

(
Geo(p)− 1

2

)
= p−2 − 2p−1 + 1. (57)

Next consider the graph G∗ on the left of Fig. 9.
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Fig. 9. Graphs related to K2,2.

We will show

χ̄(G∗) =
2β2

2∂

(1− 2β2)(1− β2)
(58)

where β2 = EZ(2).
We start by repeating the argument in the r = 2 case of (47). In the for-

wards space-time PWIT process, consider the newly-arrived root and an edge
(root, v−1). At time t after the arrival of the root, let Nt = 1+ the number
of vertices v such that (v, root) and (v, v−1) are both edges of the graph pro-
cess; regard the “+1” as counting the root itself. Then Nt is a Yule process of
rate β2 =

∫ ∞
0 p2(x) dx. Thus at time t there are

(
Nt−1

2

)
graphs of the desired

form containing the edge (root, v−1). Because the age T of the root has Exp(1)
distribution, we see

χ̄(G∗) = ∂E

(
NT − 1

2

)

where ∂ = EDout is the expected number of edges of the form (root, v−1). Using
(28) and (57),

χ̄(G∗) = ∂E
(
e2β2T − 2eβ2T + 1

)

= ∂
(

1
1−2β2

− 2
1−β2

+ 1
)

leading to (58).
Next, in G∗

∞ consider

Q := number of unordered pairs (v−1, v−2) such that (root, v−1) and
(root, v−2) are edges, and v−1 and v−2 were in different geometric com-
ponents at the arrival time of the root.

By considering distances r1, r2 from the root to the near neighbors of the geo-
metric components containing v1, v2,

EQ = 1
2

∫ ∫
p(r1)p(r2) dr1dr2 × ∂2 = β2∂2/2.
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Now consider in G∗
∞ configurations G̃ as on the right of Fig. 9, where there

is no edge between v−1 and v−2, and where the root is the first-arriving vertex
to have edges to both v−1 and v−2; these requirements are equivalent to saying
that at the arrival time of the root, v−1 and v−2 were in different geometric
components. Reuse a now-familiar argument. At time t after the arrival of the
root, let Nt = 1+ the number of vertices v �= root such that (v, v−2) and (v, v−1)
are both edges of the graph process; regard the “+1” as counting the root itself.
Then Nt is a Yule process of rate β2 =

∫ ∞
0 p2(x) dx. Thus at time t the number

of possible unordered pairs {v1, v2} which give the configuration in the figure,
where we allow one of {v1, v2} to be the root, equals

(
Nt

2

)
. Because the age T of

the root has Exp(1) distribution, we see

χ̄(G̃) = E

(
NT
2

)
× EQ

where χ̄(G̃) is the density of graphs as on the right of Fig. 9, perhaps with extra
edges, but subject to the requirement that the root is the first-arriving vertex
to have edges to both v−1 and v−2. Using (28) and (57),

E

(
NT
2

)
= E

(
e2β2T − eβ2T

)
= 1

1−2β2
− 1

1−β2
=

β2

(1− 2β2)(1− β2)
.

One can now write

dens (K2,2) = 1
2 χ̄(K2,2) = χ̄(G∗) + χ̄(G̃)

because a 4-vertex graph in G∗
∞ containing K2,2 is either of the form G∗ or is

the restriction of a graph of the form G̃, in which the extra root is specified
by the requirement stated above (the factor 1/2 reflects the fact ι(K2,2) = 2).
Combining the formulas above gives

1
2 χ̄(K2,2) =

β2
2∂

(1− 2β2)(1− β2)
+ β2∂2/2× β2

(1− 2β2)(1− β2)

which simplifies to (46).

5.3 Directed Percolation

Here we record some calculations without detailed explanation. In the context
of the space-time PWIT and the evolving random graph process G∗

∞(s), we can
seek to grow a “core” graph C(s) inside G∗

∞(s) via a greedy rule:

a newly-arriving vertex is included in C(s) if it creates an edge to some
vertex already in C(s), in which case all such edges are included in C(s).

If this construction works, we expect the process (C(s)) to have a a stationary
distribution C(0), say, where C(0) ⊂ G∗

∞. Consider
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q = P (root ∈ C(0))
Y = out-degree of root in C(0), given root ∈ C(0).

Consider the relation

Ỹ =
∞∑

i=1

Beri(q)Bini(1 + Yi, p(ξi))

where we write Ber(p) for a Bernoulli(p) r.v. (taking value 1 with probability p
and value 0 otherwise). Using the recursive structure of the limit random graph
process, we see that q and Y solve the equations (for unknown 0 < q < 1 and
an unknown distribution Y on {1, 2, 3, . . . })

Y
d= dist(Ỹ |Ỹ ≥ 1); q = P (Ỹ ≥ 1). (59)

Define pdir-perc(α, λ) to be the solution q if it exists, and to be 0 otherwise.
The interpretation of this quantity in terms of the finite random graph process
(Gn, n ≥ 1) is that

n−1ET→ pdir-perc(α, λ)

where T is the maximal size of a tree in Gn directed toward some root. So in
particular, for pperc(α, λ) defined at (18),

pdir-perc(α, λ) ≤ pperc(α, λ).

Equation (59) in principle determines pdir-perc(α, λ), but to get an explicit
bound we reuse an underlying idea. Because 1 + Yi ≥ 2,

Ỹ ≥
∞∑

i=1

Beri(q)Bini(2, p(ξi)) = Y ∗, say.

If the equation

q = P (Y ∗ ≥ 1) (60)

has a solution q > 0 then one can argue pdir-perc(α, λ) ≥ q. But (60) is an
explicit equation

1− q = exp
(
−

∫
(2p(x)− p2(x))q dx

)
= exp(−(2β − β2)q).

If 2β − β2 > 1 there is a solution q > 0, establishing (19).
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5.4 Out-Degree in the Case αλ = 1

The special property of this case is that p(x) = e−λx. On the PWIT consider

Y =
∑

v 	=root
Ber(e−λd(v,root)).

This satisfies the same recursion (in the special case) as does Dout. But there is
another way to study Y , which we sketch briefly. Either the root of the PWIT has
no children within a small distance δ; or it does have a child, and the distances
to the other descendants of the root and of this child are independent copies of
the PWIT distances. Because the effect on Y of increasing distances by δ is to
censor each Bernoulli success with probability λδ, we see that Y is the stationary
distribution of the continuous-time Markov chain on states {0, 1, 2, . . . } with
dynamics

y → y − 1 : rate λy
y → y + Ŷ + 1 : rate 1

where Ŷ is an independent copy of Y . One can now check algebraically that

P (Y = y) = (1− 1
λ )( 1

λ )y, y ≥ 0

solves the balance equations for this chain. That is, 1 +Dout has Geo(1− 1
λ ) =

Geo(1− α) distribution, as asserted in (36).
Remark. Antar Bandyopadhyay (personal communication) has given a purely

analytic verification of (36).

5.5 Triangle Density of a Function of Degree

Here we outline an argument for (16). Because Din has power-law tail and Dout
has geometric tail, when D = Din +Dout is large, say k, then Dout = O(1) and
Din = k −O(1). It is then not hard to argue that the large-k behavior for C(k)
will be the same as for

C∗(k) =
E(number of triangles with in-vertex v0 | v0 has in-degree k)(

k
2

)

where the in-vertex of a triangle is the vertex with two in-edges.
Recall from Sect. 4.2 that

N(t) = number of in-edges at a typical vertex v0 at time t after its arrival

is the Yule process of rate β. Write v1, v2, v3, . . . for the successive arriving
vertices which create edges to v0, and for i ≥ 2 write

Mi = number of edges from vi to {vi−1, vi−2, . . . , v1}.
After vk arrives there are M2 +M3 + . . .+Mk triangles with in-vertex v0. If we
can show
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EMk → b as k →∞

then we will have

C(k) ≈ kb(
k
2

) ∼ 2b
k
. (61)

Here we are sliding over the fact that 1+Din is the Yule process evaluated at an
independent Exp(1) time T ; conditioning this to take a value k does not affect
the properties used in the argument below.

Suppose vertices v1, . . . , vk−1 have arrived and consider what edges will be
created when vk arrives. The dynamics (22) of the space-time PWIT say

the rate of arrival of new vertices with some one of v0, v1, . . . , vk−1 as
near neighbor and at distance ∈ [x, x+dx] from that near neighbor equals
k dx. The index I of that near neighbor vI is uniform on {0, 1, . . . , k−1}.

Such an arriving vertex creates an edge to v0 with probability p(x). So condi-
tional on that event (meaning the arriving vertex is vk), the distance ξ̂ from the
near neighbor vI and the index I = Ik of that near neighbor satisfy
(i) ξ̂ has probability density function p̂(x) = p(x)∫

p(u)du ;
(ii) I is uniform on {0, 1, . . . , k − 1}.
Because vk will copy each of theMI out-edges from vI with probability p(ξ) each,
and create an edge to VI with the same probability, we obtain the recursion

Mk
d= Bin(1 +MI , p(ξ̂))

where M1 = 0 and where we interpret the right side as 0 when I = 0. So the
limit limk EMk = b solves b = (1 + b)Ep(ξ̂) and so b = Ep(ξ̂)

1−Ep(ξ̂) . Finally,

Ep(ξ̂) =
∫
p(x)p̂(x) dx = β2/β.

So b = β2
β−β2

and (16) follows from (61).

6 Comparison with Other Models

Recent complex networks models fall into two categories. In the small worlds
models popularized by Strogatz and Watts, vertices are points in d-dimensional
space, which automatically provides a metric distance between vertices, and
the model uses some rule to create a random graph with short-range and long-
range edges. In purely graph-theoretical models, such as the basic proportional
attachment model popularized by Albert and Barabási7 the vertices have no
“intrinsic structure” other than that provided by the graph; we visualize this as
7 but really just a minor variation of Yule’s idea: see Lecture 4 of [16]
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saying that each pair of vertices is metric distance 1 apart. In a metric copying
model we visualize vertices as points in some abstract metric space, representing
(in the case of web pages, say) the difference between the content of the pages,
or (for people) some notion of “social distance” based on location, education,
profession, interests etc of the individuals. In detail the mean-field model of
distance model is used for mathematical tractability rather than any claimed
realism. But the exponential growth of number of vertices with metric distance
is intermediate between, and surely in many contexts more plausible than, the
alternatives implicit in the two standard categories of model above.

Within graph-theoretic models, the idea of distance preferences in attach-
ment has been explored (see [17] and citations therein). But the general idea
of combining proportional attachment with metric geometry has scarcely been
explored8, and the specific use of the mean-field model is novel.

As a technical note, the mean-field model is a zero-parameter9 model of
distance. Our full network model has the two parameters (α, λ); in contrast a
typical small-worlds network model has four parameters (dimension, number of
short-range links, constant and exponent for probability of long-range edges).

As another technical note, the property (cf. (16)) C(k) ∼ c/k has been pro-
posed [19] as a criterion for identifying networks which are “hierarchical” in some
sense. But in our finite-n model (recall Sect. 3.5) each vertex has qualitatively
the same behavior, rather than different vertices being a priori assigned different
hierarchical roles. So our model is non-hierarchical, and we are inclined to regard
the criterion as ineffective10.

The specific model studied in this paper is intended as a “general purpose”
model rather than being tuned to some particular subclass of real-world net-
works. Having as one ingredient the now-familiar proportional attachment fea-
ture, one could look at the many existing variant models in the literature and
explore them within our platform. In other words, there are many ways to add a
third parameter intended to express some presumed real-world feature or some
theoretical desideratum. For instance

– One can impose connectivity by requiring that a new vertex always links to
its nearest neighbor.

– one can add rules allowing a new vertex to immediately acquire in-edges,
or for edges to randomly appear between existing edges. Such rules can be
designed (as in e.g. [4] Sect. 11) to produce power law distributions for in-
degree.

8 [18] gives a simulation study of an explicitly power-law model, as well as interesting
empirical study of a notion of lexical distance between web pages

9 Zero dimensionless parameters, to be pedantic
10 One could alternatively regard it as indicating some subtle emergent hierarchical

structure; cf. [20]
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6.1 Concluding Remarks

In this paper we have focused on

– describing the model and its conceptual background (section 3)
– listing explicit formulas (sections 2.2 – 2.6) and exhibiting the calculations

which lead to these formulas (sections 4 and 5).

We are postponing to a later paper consideration of

– technical issues in the relation between the finite-n model and its infinite
limit G∗

∞
– the open problems indicated in sections 2.7 – 2.8, whose study requires the

“bounding” techniques of theoretical mathematical probability rather than
explicit calculations.
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Abstract. The small world phenomenon, that consistently occurs in numerous exist-
ing networks, refers to two similar but different properties — small average distance
and the clustering effect. We consider a hybrid graph model that incorporates both
properties by combining a global graph and a local graph. The global graph is modeled
by a random graph with a power law degree distribution, while the local graph has
specified local connectivity. We will prove that the hybrid graph has average distance
and diameter close to that of random graphs with the same degree distribution (under
certain mild conditions). We also give a simple decomposition algorithm which, for
any given (real) graph, identifies the global edges and extracts the local graph (which
is uniquely determined depending only on the local connectivity). We can then apply
our theoretical results for analyzing real graphs, provided the parameters of the hybrid
model can be appropriately chosen.

1 Introduction

In 1967, the psychologist Stanley Milgram [1] conducted a series of experiments
which led him to the well known concept captured by the phrase “Six degrees
of separation”. Namely, any two strangers (on the planet) are connected by a
short chain of intermediate acquaintances of length at most six. Since then, it
has been observed that many realistic networks possess the so-called small world
phenomenon, with two distinguishing traits —small distance between any pair
of nodes, and the clustering effect that two nodes are more likely to be adjacent
if they share a neighbor.

There have been various approaches to model networks that have the small
world phenomenon. Progress has been made in analyzing the aspect of small
distances by using generalized random graph theory and properties of the power
law distribution. However, the clustering effect seems much harder to model.

In 1999, several research groups independently observed that numerous net-
works such as the Internet graphs, call graphs and social networks, etc. all have
a power law distribution [2–15]. Namely, the number of nodes of degree k is pro-
portional to k−β for some positive exponent β. By using a random graph model
for a given degree distribution, it can be shown [16] in a rigorous way that,
for example, a random power law graph with exponent β, where 2 < β < 3,
almost surely has average distance of order log logn and has diameter of order
log n. (Note that the average distance is the average of distances between pairs
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650, 89–104 (2004)
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of nodes that are connected and the diameter is the maximum distance between
such pairs of nodes.)

To model the clustering effect, most common approaches just add random
edges to grid graphs or the like (see Watts and Strogatz [17,18]). Kleinberg [19]
introduced the network model of a grid graph with additional random edges
joining two nodes u, v with probability proportional to [d(u, v)]−r (where d(., .)
represents the distance in the grid graph and r is a constant that determines the
effectiveness of decentralized algorithms for the network). In Kleinberg’s model
and the model of Watts and Strogatz, the graphs have the same expected de-
gree at every node and do not have a power law degree distribution. Fabrikant,
Koutsoupias and Paradimitriou [20] proposed a model of having vertices in the
Euclidean plane and adding edges by optimizing the trade-off between (Eu-
clidean) distances and “centrality” in the network. Such grid-based models are
quite restrictive and far from satisfactory for modeling webgraphs or biological
networks, for example.

The difficulty in reconciling these two aspects – small distance and clustering
effect– resembles philosophically the challenge in physical world concerning the
“weak force” and the “strong force”. There is no unified model embracing both
the weak and strong forces in spite of intense efforts of many great scientists.
Random power law graphs are good for modeling the aspect of small distance,
but fail miserably for modeling the clustering effect. As a matter of fact, the
related graph-theoretical parameters involving small distances and clustering
seem to be of an entirely different scale. For example, the clustering effect is quite
sensitive to average degree but this is not so for the small (average) distance.
Examples of real graphs tell the same story. According to Henzinger [21] at
Google, random graphs are good for modeling interdomain hyperlinks but not
the local links.

In this paper, we consider a general hybrid graph model that has both aspects
of the small world phenomenon. Roughly speaking, a hybrid graph is a union
of a global graph (consisting of “long edges” providing small distances) and a
local graph (consisting of “short edges” respecting local connections). (Detailed
definitions will be given in Sect. 2.) By using several tools for dealing with
random graphs with given expected degree sequences, we will prove that our
hybrid graphs have the following properties:

1. Power law degree distribution for a given power β.
2. Small average distance at the same order as that of random graphs.
3. Small diameter at the same order as that of random graphs.
4. Locally highly connected.

We will show that the average distance/diameter is bounded above by c log n
where c depends on the “second-order” average degree (which will be defined
later). Consequently, this implies a polylog upper bound for analyzing many
distributed algorithms if the network can be well approximated by this general
family of hybrid power law graphs.
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Motivated by the hybrid graph model, we will give a simple decomposition
algorithm. For any real network, the decomposition algorithm identifies the local
graph and the global graph. We can then use our theorems to deduce properties
of the real network if the local graph satisfies local connectivity conditions and
the global graph can be approximated by a random power law graph.

This paper is organized as follows. In Sect. 2, we give basic definitions for
power law graphs and random graphs. In Sect. 3, we consider local graphs and
give the decomposition algorithm. In Sect. 4, we propose the hybrid graph model
by combining a local graph and a random power law graph. We also show that
the local graph can be extracted from the hybrid graph with an error estimate
of lower order. In Sect. 5, we describe several useful facts about random graphs
with given expected degrees. In particular, we summarize some facts concerning
the average distance and diameter of random power law graphs. In Sect. 6, we es-
tablish the desired upper bounds for average distance/diameter for hybrid power
law graphs. Section 7 includes further discussions and a number of remarks.

2 Preliminaries

Before we consider the hybrid graphs, we will discuss random graphs with given
expected degree sequences and power law degree distribution.

2.1 Random Graphs with Given Expected Degrees

We consider a general class of random graphs with given expected degree se-
quence w = (w1, w2, . . . , wn). The probability pij that there is an edge between
vertex vi and vertex vj is wiwjρ for any index i and index j. Here we choose
ρ to be (

∑
wi)−1 and we assume that maxi w2

i <
∑
k wk so that pij ≤ 1 for

all i and j. It is then easy to check that the vertex vi has expected degree wi.
We remark that the assumption maxi w2

i <
∑
k wk implies that the sequence wi

is graphical (in the sense that it satisfies the necessary and sufficient condition
for a sequence to be realized by a graph [22]) except that we do not require
the wi’s to be integers. We note that this model allows a non-zero probability
for self-loops. The expected number of loops is quite small (of lower order) in
comparison with the total number of edges. Consequently, loops have little effect
on various graph properties such as average distance, clusterness, etc.

We denote a random graph with a given expected degree sequence w by
G(w). For example, the typical random graph G(n, p) (see [23]) on n ver-
tices and edge density p is just a random graph with expected degree sequence
(pn, pn, . . . , pn). The random graph G(w) is different from the random graphs
with a prescribed exact degree sequence (which involve dependency and are hard
to analyze). For example, in [24,25], Molloy and Reed obtained results on the
sizes of connected components for random graphs with prescribed exact degree
sequences which are required to satisfy certain “smoothing” conditions. Our
model is also different from the evolution models generated by simple growth
rules (such as preferential attachment schemes as in [3,5,26,9] ).
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2.2 Power Law Degree Distribution

If a graph strictly follows the power law, then the average degree as well as its
connectivity (i.e., the distribution of connected components) will be completely
determined by the exponent of the power law (see [3]). However, for most realistic
graphs, the power law holds only for a certain range of degrees, namely, for the
degrees which not too small and not too large. We will consider the following
model with the consideration that most examples of massive graphs satisfying
power law have exponent β > 2.
Model M(n, β, d,m) where
• n is the number of vertices,
• β > 2 is the power of the power law,
• d is the expected average degree,
• m is the expected maximum degree (or an upper bound for the range of

degrees that obey the power law) and m2 = o(nd).

We assume that the i− i0 + 1-th vertex vi has expected degree

wi = ci−
1

β−1

for i0 ≤ i < n+i0. Here c depends on the average degree d and i0 depends on the
maximum expected degree m. It is easy to compute that the number of vertices
of expected degree between k and k+1 is of order c′k−β where c′ = cβ−1(β− 1)
as required by the power law. To determine c, we consider

Vol(G) =
∑

i

wi =
n∑

i=i0

ci−
1

β−1 ≈ cβ − 1
β − 2

n1− 1
β−1

Here we assume β > 2. Since nd ≈ Vol(G), we have

c =
β − 2
β − 1

dn
1

β−1 (1)

i0 = n

(
d(β − 2)
m(β − 1)

)β−1

(2)

Here (2) is deduced from the (cut-off) condition wi0 = m and (1).
Let f(x) = β−2

β−1dx
− 1

β−1 . The expected degrees (or weights) are just f( in ),
i0 ≤ i ≤ n.

We will also consider an alternative model M ′(n, β, d,m), in which each ver-
tex x is assigned a weight f(y), where y is a real number chosen uniformly in
the range of (i0, n). It can be easily shown that two models are equivalent (for
i0 � n ) in the sense that a property that holds for a random graph inM almost
surely must hold for M ′ and vice versa.

2.3 The Volume and the Second-Order Average Degree

For a subset S of vertices, the k-th volume of S, denoted by Volk(S), is the sum
of the k-th power of weights of vertices in S.
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Volk(S) =
∑

vi∈S
wki

The expected average degree is defined to be

Vol1(G)
Vol0(G)

=
1
n

∑

i

wi = d(1 + o(1)).

We write Vol(G) = Vol1(G). Of particular interest is the second-order average
degree d̃ defined by

d̃ =
Vol2(G)
Vol1(G)

=
∑
i w

2
i∑

i wi
.

For power law graphs with exponent β, we have [16]

d̃ =
Vol2(G)
Vol1(G)

=






d (β−2)2

(β−1)(β−3) (1 + o(1)) if β > 3.
1
4d lnm(1 + o(1)). if β = 3.
d (β−2)2

(β−1)(3−β)m
3−β(1 + o(1)) if 2 < β < 3.

3 Local Graphs

Roughly speaking, a local graph is locally highly connected. To be precise, here
we use two parameters to describe the local connectivity. For any fixed two
integers k ≥ 2 and l ≥ 2, a graph L is called “locally (k, l)-connected” if for
any edge uv, there are at least l edge-disjoint paths (i.e, no two paths share a
common edge) with length at most k joining from u to v (including the edge
uv). For example, the grid graph Cn�Cn is locally (3, 3)-connected as well as
locally (5, 9)-connected.

By the definition, the union of two locally (k, l)-connected graphs is lo-
cally (k, l)-connected. The maximum locally (k, l)-connected subgraph H is the
union of all locally (k, l)-connected subgraphs of G. Thus, for any graph G, the
maximum locally (k, l)-connected subgraph is unique. We remark that a (k, l)-
connected graph is not necessarily connected. For example, the disjoint union of
two (k, l)-connected graphs is still (k, l)-connected.

Here is a simple greedy algorithm for finding the maximum locally (k, l)-
connected subgraph.

Algorithm(k, l):
For each edge e = uv, check whether there are l edge-disjoint paths with length
at most k connecting u and v in the current graph G. If not, delete the edge e
from G. Then iterate the procedure until no edge can be removed.

Theorem 1. For any graph G, Algorithm(k, l) finds the unique maximum locally
(k, l)-connected subgraph regardless of the order of edges chosen.



94 F. Chung and L. Lu

Fig. 1. A hybrid graph, which contains
the grid graph C50�C50 as the local graph,
and 528 additional random edges.

Fig. 2. After removing all global edges
(with k = l = 3), the local graph is almost
perfectly recovered.

Proof. Let H ′ be a graph produced by the Algorithm(k, l) where the order that
edges are removed is arbitrary. It is sufficient to show H = H ′.

Let G = H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hr = H ′ be the sequence of the inter-
mediate subgraphs produced by Algorithm(k, l). We will prove H ⊂ Hi for all
i = 0, 1, 2, . . . , r by induction on i. It is trivial for i = 0 since H ⊂ H0 = G. Now
we assume H ⊂ Hi. For i + 1, let ei+1 = uv be the edge being removed at the
(i+ 1)-st stage. It is sufficient to show uv is not an edge of H. Otherwise, there
are l edge-disjoint paths of H joining from u to v. Since H ⊂ Hi, these paths
are also paths of Hi. According to the algorithm, it can not be removed, which
is a contradiction. Thus, we have H ⊂ Hi+1 and H ⊂ Hr = H ′.

In the other direction, since H ′ is locally (k, l)-connected, we have H ′ ⊂ H.
H is the maximum subgraph with this property. The proof is complete. �

The edges removed are considered the “global” edges. For certain classes of
graphs, the local graph can be almost perfectly recovered as shown by Figs. 1
and 2.

Another example is the Collaboration Graph of the second kind with 237,426
vertices (as authors of Math Review) and about 226,194 edges (each of which is
associated with a paper with exactly two coauthors), (see
http://www.oakland.edu/∼grossman/erdoshp.html for detailed explanations).
The local graph L (with k = l = 3) has 1979 vertices and 4221 edges. Their
degree distributions are showed by Figs. 3, 4 and 5.
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Fig. 3. The degree distribution of the Collaboration Graph of the second kind.
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Fig. 4. The degree distribution of the lo-
cal graph of the Collaboration Graph of
the second kind (with k = l = 3) .

Fig. 5. The degree distribution of the
global graph of the Collaboration Graph
of the second kind.

4 The Hybrid Power Law Model

A hybrid graph consists of two parts – a global graph and a local graph. The
edge set of the hybrid graph is a disjoint union of the edge set of the global graph
and that of the local graph. The related parameters include:
β, the power law exponent,
d, the average degree,
m, the expected maximum degree (or an upper bound for the range of degrees
that obey the power law), and
L, the local graph.

We remark that for a given network, all these parameters are straightforward
to compute and estimate. Therefore it is quite easy to build a simulation for a
network with given parameters.

The hybrid graph H(n, β, d,m,L):
The local graph L is a locally (k, l)-connected graph with bounded degrees.
The vertex vi of H has weight wi where w1, w2, . . . , wn satisfy a power law
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distribution with power β > 2 using the model M ′(n, β, d,m) in the Sect. 2.2.
We also assume that d ≥ 1.

For any two points u and v, the probability of having an edge between u and
v is denoted by p(u, v), defined as follows:

p(u, v) =
{

1 if uv is an edge of L;
wuwvρ otherwise.

We will see that the local graph is quite robust in the sense that it can be
almost completely recovered from the hybrid graph.

Theorem 2. For any fixed constants M , k ≥ 2, and l ≥ 3, suppose L is a locally
(k, l)-connected graph with degrees bounded by M . Let L′ be the maximum locally
(k, l)-connected subgraph in the hybrid graph H(n, β, d,m,L) with m = o(n

1
2 − 1

l ).
Then L′ satisfies

1. L ⊂ L′. The expected number of edges in L′ \L is small, i.e., e(L′)− e(L) =
O(m) = o(

√
n).

2. The degree of L′ is almost surely bounded above by M + � l2� − 1.
3. The diameter D(L′) of L′ is almost surely (1 + o(1))D(L) if the diameter
D(L) is sufficiently large.

Proof. From the definitions, we have L ⊂ L′. Thus, D(L′) ≤ D(L). In the
other direction, we consider edges in L′ but not in L, which we call the surviving
edges. We call the distance of two vertices in L the local distance, denoted by
dL. The neighborhood of a vertex in L is said to be a local neighborhood. A i-th
local neighborhood of v consists of all vertices within local distance i from v. We
will prove the following:

Claim. Almost surely all surviving edges uv have endpoints with local distance
dL(u, v) at most k.

For any vertices u and v, if dL(u, v) > k, any path of length at most k in L′

from u to v must contain at least one surviving edge. Since this edge uv survives
after the algorithm terminates, there exist at least l edge-disjoint edges in L′

from the i-th local neighborhood of u to the j-th local neighborhood of v with
some i + j = k − 1. Since the local degrees are bounded by M , the number of
vertices in the i-th local neighborhood of u is at most

i∑

s=0

Ms =
M i+1

M − 1
≤ 2M i.

Similarly, the number of vertices in the j-th local neighborhood of u is at most
2M j . There are at most 2M i × 2M j = 4Mk−1 pairs of such vertices. For each
pair, the probability of being randomly chosen for the hybrid graph is less than
m2ρ. Thus, the probability that uv survives is at most

(
4Mk−1

l

)
(m2ρ)l = o

(
1
n2

)
.
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Therefore, almost surely, all surviving edges have endpoints with local distance
at most k.

Now we consider the expected number of surviving edges, which almost surely
have endpoints within local distance at most k. We choose a vertex u. There are
at most 2Mk vertices with local distance at most k from u. The expected number
of surviving edge uv with dL(u, v) ≤ k is at most

∑
u 2Mkwumρ = 2Mkm. Form

large, the number of surviving random edges is well-concentrated on its expected
value.

For any fixed u, we examine the number of surviving edges uv which are
incident to u. Since almost surely v is within local distance k from u, there are
at most 2Mk of possible v’s. The probability that there are at least � l2� v’s with
uv surviving is at most

(
2Mk

� l2�
)

(m2ρ)� l
2 � = o

(
1
n

)
.

Thus, almost surely the degree of L′ is at most M + � l2� − 1.
Let g(n) be a (very) slowly growing function of n, which approaches infinity

as n increases. There are at most 4M2g(n) pairs of vertices within local distance
g(n) from any given vertex u. The probability that l surviving edges are within
local distance g(n) from any given vertex u is at most

(
4M2g(n)

l

)
(m2ρ)l = o

(
1
n2

)
,

for some slowly growing function g(n) = o(log n
1
2 − 1

l

m ). Almost surely, for all
vertex u, there are at most l − 1 surviving edges with local distance at most k
from u.

Let (u, v) be a pair of vertices with dL(u, v) = D(L). The distance between u
and v in the hybrid graph can be reduced (from the local distance of u and v) by
surviving edges. Each surviving edge can reduce the distance from u to v by at
most k− 1. The total number of surviving edges which can be used on the path
from u to v is at most l

g(n) = o(1). Hence dL′(u, v) ≥ (1− kl
g(n) )dL(u, v) = (1−

o(1))D(L). Thus, the diameter D(L′) is at least (1− o(1))D(L). This completes
the proof of Theorem 2 �

5 Several Facts Concerning Random Power Law Graphs

In this section we state several useful facts for random power law graphs G(w)
with given expected degree sequence w. Proofs of these facts can be found in
[16].

The expected degree sequence w for a graph G on n vertices in G(w) is said
to be strongly sparse if we have the following :
(i) The second order average degree d̃ satisfies 0 < log d̃� log n.
(ii) For some constant c > 0, all but o(n) vertices have expected degree wi
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satisfying wi ≥ c. The average expected degree d =
∑
i wi/n is strictly greater

than 1, i.e., d > 1 + ε for some positive value ε independent of n.
The expected degree sequence w for a graph G on n vertices in G(w) is said

to be admissible if the following condition holds, in addition to the assumption
that w is strongly sparse.
(iii) There is a subset U satisfying:

Vol2(U) = (1 + o(1))Vol2(G)  Vol3(U) log d̃ log log n
d̃ log n

.

The expected degree sequence w for a graph G on n vertices is said to be
specially admissible if (i) is replaced by (i’) and (iii) is replaced by (iii’):
(i’) log d̃ = O(log d).
(iii’) There is a subset U satisfying Vol3(U) = O(Vol2(G)) d̃

log d̃
, and Vol2(U) >

dVol2(G)/d̃.

Fact 1. For a random graph G with admissible expected degree sequence
(w1, . . . , wn), the average distance is almost surely (1 + o(1)) logn

log d̃
.

Fact 2. For a random graph G with a specially admissible degree sequence
(w1, . . . , wn), the diameter is almost surely Θ(log n/ log d̃).

Fact 3. For a power law random graph with exponent β > 3 and average degree
d strictly greater than 1, almost surely the average distance is (1+o(1)) log n

log d̃
and

the diameter is Θ(log n).

Fact 4. Suppose a power law random graph with exponent β has average degree d
strictly greater than 1 and maximum degree m satisfying logm log n/ log log n.
If 2 < β < 3, almost surely the diameter is Θ(log n) and the average distance is
at most (2 + o(1)) log log n

log(1/(β−2)) .
For the case of β = 3, the power law random graph has diameter almost

surely Θ(log n) and has average distance Θ(log n/ log log n).

The proofs of the above facts use the following lemmas concerning the dis-
tances and neighborhood expansions in G(w). These lemmas (as proved in [27])
are useful later for proving the main theorems in the next section.

Lemma 1. In a random graph G in G(w) with a given expected degree sequence
w = (w1, . . . , wn), for any fixed pairs of vertices (u, v), the distance d(u, v) be-
tween u and v is greater than

⌊
log Vol(G)−c

log d̃

⌋
with probability at least 1− wuwv

d̃(d̃−1)
e−c.

Lemma 2. In a random graph G ∈ G(w), for any two subsets S and T of
vertices, we have

Vol(Γ (S) ∩ T ) ≥ (1− 2ε)Vol(S)
Vol2(T )
Vol(G)

with probability at least 1 − e−c where Γ (S) = {v : v ∼ u ∈ S and v �∈ S},
provided Vol(S) satisfies
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2cVol3(T )Vol(G)
ε2Vol22(T )

≤ Vol(S) ≤ εVol2(T )Vol(G)
Vol3(T )

(3)

Lemma 3. For any two disjoint subsets S and T with Vol(S)Vol(T ) > cVol(G),
we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .

6 The Diameter of the Hybrid Model

Most local graphs have large diameters and large average distances. For example,
the average distance of the grid graph on n vertices is O(

√
n

logn ). However, with

additional “hyperlinks”, (e.g., edges from the global random power law graph),
the average distance of the hybrid graph can be significantly reduced.

In a hybrid graph H, let G denote its global power law graph as defined in
Sect. 4. Let w = (w1, w2, . . . , wm) denote the degree sequence of G. We will
say that vertex vi has weight wi and we recall that for a subset S of vertices,
we have Vol(S) =

∑
vi∈S wi and Vol(G) =

∑
wi. Also for k ≥ 1, we have

Volk(S) =
∑
vi∈S w

k
i . In particular, the second order average degree d̃ is just

Vol2(G)/Vol(G). The following are immediate consequences of Fact 3 and Fact 4.

Theorem 3. For a hybrid graph H(n, β, d,m,L) with β > 3, almost surely, the
average distance is (1 + o(1)) log n

log d̃
and the diameter is O(log n).

Theorem 4. For a hybrid graph H(n, β, d,m,L) with 2 < β < 3, almost surely,
the average distance is O(log log n) and the diameter is O(log n).

For a hybrid graph H(n, β, d,m,L) with β = 3, almost surely, the average
distance is O(log n/ log log n) and the diameter is O(log n).

For the range of 2 < β < 3, the power law graphs include many real networks.
We can further reduce the diameter if additional conditions are satisfied. A local
graph L is said to have isoperimetric dimension δ if for every vertex v in L and
every integer k < (log log n)1/δ, there are at least kδ vertices in L of distance k
from v. For example, the grid graph in the plane has isoperimetric dimension 2.
The d-dimensional grid graph has isoperimetric dimension d.

Theorem 5. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
the local graph has isoperimetric dimension δ with δ ≥ log log n/(log log logn).
Then almost surely, the diameter is O(log log n).

The main idea of the proof of Theorem 5 is to use the “octopus” structure
of the random powerlaw graph with exponent β between 2 and 3. The proof is
quite similar to that in [16] except that here we have the additional help from
the local graph. For the sake of completeness, we include the proof here.
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Proof of Theorem 5.
First, we define the core of a power law graph with exponent β to be the set St
of vertices of degree at least t = n1/ log log n.

Claim 1. The diameter of the core is almost surely O(log log n). This follows
from the fact that the core contains an Erdős-Renyi graph G(n′, p) with n′ =
cnt1−β and p = t2/Vol(G). From [23], this subgraph is almost surely connected.
Using a result in [28], the diameter of this subgraph is at most logn′

log pn′ = (1 +
o(1)) logn

(3−β) log t = O(log log n).

Claim 2. Almost all vertices with degree at least log n are almost surely within
distance O(log log n) from the core. To see this, we start with a vertex u0 with
degree k0 ≥ logC n for some constant C = 1.1

(β−2)(3−β) . By applying Lemma 3,
with probability at least 1 − n−3, u0 is a neighbor of some u1 with degree
k1 ≥ (k0/ logC n)1/(β−2)s

. We then repeat this process to find a path with vertices
u0, u1, . . . , us, and the degree ks of us satisfies ks ≥ (k0/ logC n)1/(β−2)s

with
probability 1 − n−2. By choosing s to satisfy log ks ≥ log n/ log log n, we are
done.

Claim 3. Each vertex v is within distance O(log log n) from a vertex of degree
at least logC n.

Proof of Claim 3. The main tools are Lemma 2. Let S be i-th neighborhood of
u, consisting of all vertices within distance i0 from u where i0 = log logn. Let
T = S(wmin, a) denote the set of vertices with weights between wmin and awmin.
Here a is some large value to be chosen later. We have

Vol(T ) ≈ nd(1− a2−β).

Vol2(T ) ≈ nd2
(

1− 1
β − 1

)2
β − 1
3− β a

3−β

Vol3(T ) ≈ nd3
(

1− 1
β − 1

)3
β − 1
4− β a

4−β

To apply Lemma 2, Vol(Γ (S)) must satisfy:

Vol(Γ (S)) ≥ 2c
ε2

Vol3(T )
Vol22(T )

Vol(G)

≈ 2c
ε2

(3− β)2

(β − 2)(4− β)
aβ−2

and

Vol(Γ (S)) ≤ εVol2(T )
Vol3(T )

Vol(G)

≈ ε (β − 2)(3− β)
(β − 1)(4− β)a

n.
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Both the above equations are easy to satisfy by using the assumption on the
local graph. Namely, we can select a = 10, c = 3 log n and for each vertex u,

Vol(Γi0(u)) ≥
60

ε2(β − 2)
log n.

By Lemma 2, with probability at least 1− e−c = 1− 1
n3 , the volume of Γi(u) for

i > i0 will grow at a rate greater than

(1− 2ε)
Vol2(T )
Vol(G)

≈ (1− 2ε)d(β − 2)2

2(β − 1)(3− β)
a3−β ,

if Γi(u) has volume not too large (<
√
n). After at most (1 + o(1)) 2 loglogn

(3−β) log a =
O(log log n) steps, the volume of the reachable vertices is at least log2 n. Lemma
3 then implies that with one additional step we can reach a vertex of weight
logC n with probability at least 1−e− log2 n The total number of steps is at most

i0 +O(log log n) + 1 = O(loglogn).

The total failure probability for u to reach a vertex of weight at least logC n is
at most

O(log log n)
1
n3 + e−O(log2 n) = o

(
1
n2

)
.

Thus, the total failure probability that some vertex u can not reach a vertex of
weight at least logC n is at most

o(1) +O(log log n)O
(

1
n

)
+ ne−O(log2 n) = o(1).

Claim 3 is proved. �
This completes the proof of Theorem 5. �
The proof of the above theorem implicitly implies the following results:

Theorem 6. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
the local graph has isoperimetric dimension δ. Then almost surely, the diameter
is O((log n)1/δ).

Theorem 7. In a hybrid graph H(n, β, d,m,L) with 2 < β < 3, suppose that
every vertex is within distance log log n of some vertex of degree log n. Then
almost surely, the diameter is O(log log n).

7 Concluding Remarks

In this paper, we consider the hybrid model for further understanding the “land-
scape” of real networks. Here we mention a number of remarks concerning the
flexibility and possible extensions of our model.
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Fig. 6. The distribution of the sizes of lo-
cal communities in the local graph (with
k = l = 3) of the Collaboration Graph of
the second kind.

Fig. 7. A “community” of size 87 in the
Collaboration Graph of the second kind.

1. In our hybrid model, the global graph was chosen to be a random graph with
given degree distribution satisfying a power law. If the global graph is to be
taken to be an admissible graph or specially admissible graph (as defined in
Sect. 5), similar results on average distance and diameter can be established
by using methods in the the proofs of Theorem 5. There are several reasons
for selecting the global graph to be a power law graph. Namely, many real
networks have power law degree distribution. In addition, random power law
graph G has the “scale-free” property [29] in the sense that if a fraction of
vertices or edges are deleted from G, the remaining graph is still a power
law graph with the same exponent (but with different average degree).

2. It is of interest to further analyze the local graphs for various classes of net-
works. In addition to local connectivity, are there other distinct properties
that local graphs have? One such example is the isoperimetric dimension
(as defined in Sect. 6) or its variations. Different types of networks (Inter-
net graphs versus biological graphs, and so on) can have different kinds of
local graphs. Are there good characterizations for different local graphs? In
particular, are there special characterizations for local graphs for networks
arising in epidemics and percolation?

3. The local graph in our hybrid model is a (k, l)-connected graph, with param-
eters k and l which can be chosen to suit the actual network under consider-
ation. We note that (k, l)-connected graphs include the grid graphs, disjoint
union of grid graphs, and grid graphs of higher dimensions, depending on
the choice of k and l. In fact, by appropriately choosing several pairs of k
and l, the algorithm given in Sect. 3 can result in a (k, l)-connected subgraph
with a number of distinct connected components and thereby identify local
“communities” within the (large) network. For example, for k = l = 3, the
local graph of Collaboration graph of the second kind is the disjoint union
of 149 (non-trivial) components as shown in Fig. 6. Each component can be
viewed as a community (Fig. 7).
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scribed degrees, in Hungarian), Mat. Lapok 11 (1961), 264-274.
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Abstract. We study a problem of data packet transport between a pair of vertices on
scale-free network, and introduce load of a vertex as the accumulated sum of a fraction
of data packets traveling along the shortest pathways between every pair of vertices. It
is found that the load distributions for many real-world networks follow a power law
with an exponent δ which is close to either 2.2(1) (class I) or 2.0 (class II), insensitive
to different values of the degree exponent γ in the range, 2 < γ < 3. The classification
of scale-free networks into the two classes may stem from the characteristics of the
shortest pathways structures. While the shortest pathways between a pair of vertices
are multiply connected in the class I, they are almost singly connected in the class II.
Such distinct topological features of the shortest pathways produce different behaviors
in diverse problems such as the distribution of diameter change by the removal of
a single vertex. Finally, we remark that since the two numerical values of the load
exponent are too close, it still remains an open question if they are really robust.
Analytic solution resolving this controversial issue is needed.

1 Introduction

Complex systems comprise of many elements such as individuals, substrates,
and companies in social, biological, and economic systems, respectively, showing
cooperative phenomena between elements through diverse interactions and adap-
tations to the pattern they create [1,2]. Such complex systems may be described
in terms of graphs, consisting of vertices and edges, where vertices (edges) rep-
resent elements (their interactions) [3–6]. This approach was initiated by Erdős
and Rényi (ER) [7]. In their model, the number of vertices N is fixed and edges
are connected among vertices randomly. They found that the entire system can
be connected with a small fraction of edges, being of order O(1/N). While such
random graph theory is a pioneering work, it cannot describe realistic networks
recently observed. In graph theory, one of interesting quantities is degree, defined
as the number of edges connecting to a certain vertex. The degree distribution
of the ER network follows a Poisson distribution.

Recently, there were findings that the degree distribution of the world-wide
web follows a power law,

PD(k) ∼ k−γ , (1)

where k means degree and γ is the degree exponent. The network displaying a
power-law degree distribution is called scale-free (SF) network. SF networks [8]

K.-I. Goh, E. Oh, C.-M. Ghim, B. Kahng, and D. Kim, Classes of the Shortest Pathway Structures
in Scale Free Networks, Lect. Notes Phys. 650, 105–125 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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are ubiquitous in real-world networks such as the world-wide web (WWW) [9–
11], the Internet [12–14], the citation network [15] and the author collaboration
network of scientific papers [16,17], and the metabolic networks in biological or-
ganisms [18]. To illustrate the mechanism of SF network formation, Barabási and
Albert (BA) [19–21] introduced an evolving network model where the number of
vertices N increases linearly with time rather than fixed, and a newly introduced
vertex is connected to m already existing vertices with probability proportional
linearly to the degree of the selected vertex, called preferential attachment (PA)
rule. Then the degree exponent follows a power law with the exponent γ = 3. A
generalized version assigns the probability proportional to k+m(a− 1), a(> 0)
being a tunable parameter. Then the degree exponent is γ = 2 + a [21].

Recently, we introduced another type of SF network model, called the static
model, in which the number of verticesN is fixed from the beginning, and vertices
are indexed by an integer i (i = 1, . . . , N) [22]. We assign the weight pi = i−α

to each vertex, where α is a control parameter in [0, 1). We select two different
vertices (i, j) with probabilities equal to the normalized weights, pi/

∑
k pk and

pj/
∑
k pk, respectively, and add an edge between them unless one exists already.

This process is repeated until mN edges are made in the system. Then the mean
degree is 2m. Since edges are connected to a vertex with frequency proportional
to the weight of that vertex, the degree at that vertex is given as

ki∑
j kj

≈ (1− α)
N1−αiα

, (2)

where
∑
j kj = 2mN . Then it follows that the degree distribution follows the

power law, (1), where γ is given by

γ = (1 + α)/α. (3)

Thus, adjusting the parameter α in [0,1), we can obtain various values of the
exponent γ in the range, 2 < γ <∞.

Emergence of a power-law in the degree distribution in complex networks is
a self-organized pattern in complex systems. From the viewpoint of the theory of
equilibrium critical phenomena, the power-law behavior implies the absence of
a characteristic scale, implying that the network is in a critical state. However,
the degree exponent depends on the details of network structure, varying mostly
in the range 2 < γ ≤ 3. Thus it would be interesting to find a physical quantity
showing universal feature, insensitive to the details of network structure. In
Sect. 2, we will introduce a quantity, called load, which has been used in the
study of transport phenomena of data packet on networks. Interestingly, the load
distribution displays a power law and the load exponent is likely to be insensitive
to the details of SF network structures. Currently it seems that there exist
two different classes displaying different load exponents for real world networks.
Furthermore, in Sect. 3, we will introduce the load-load correlation function,
which behaves differently from the degree-degree correlation function in social
networks. In Sect. 4, we will consider the distribution of diameter changes when
a single vertex is removed. This problem is another example that can distinguish
the shortest pathways characteristics between a pair of vertices in SF networks.
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2 Load or Betweenness Centrality

Let us suppose that a data packet is sent from a vertex i to j, (i → j). It is
transmitted along the shortest pathway between them. If there exist more than
one shortest pathways, the data packet would encounter one or more branching
points. In this case, the data packet is presumed to take one of them with equal
probability, and the data packet is substantially divided evenly by the number
of branches at each branching point as it travels. The contribution to the load at
vertex k due to the packet flow from i to j is denoted as �(i→j)

k as shown in Fig. 1a.
Then we define the load �k of a vertex k, �k =

∑
i,j �

(i→j)
k . Note that �(i→j)

k may

be different from �
(j→i)
k even for undirected networks (See Fig. 1a). Here, we do

not take into account the time delay of data transfer at each vertex or edge,
so that all data are delivered in a unit time, regardless of the distance between
any two vertices. So the load is a static variable for a given number of nodes N .
Since the packets are conserved, the total load contributed by one pair is simply
related to the shortest pathway length dij between them, by

∑
k �

(i→j)
k = dij+1.

Thus we have the sum rule for �k:

∑

k

�k =
∑

i 	=j
(dij + 1) = N(N − 1)(D + 1) ∼ N2D , (4)

where D is the average of dij over all pairs, called the diameter.
The quantity, load is closely related to the one used in sociology called “be-

tweenness centrality” (BC) to quantify how much power is centralized to people
in social networks [23,24]. This is defined as follows. Let us consider a com-
munication between two persons (i, j), represented by a pair of vertices (i, j).
The communication is supposed to travel along the shortest pathway between
the two. When there are more than one geodesic between them, one of them
is taken with equal probability. The BC for a certain vertex is defined as the
accumulated fraction of the total number of the shortest pathways passing on
that vertex over all pairs. That is, the betweenness centrality at a vertex k is
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Fig. 1. The definitions of the load (a) and the BC (b). In (a), the load at each vertex
due to a unit packet transfer from the vertex s to the vertex t, �(s→t) is shown. In the
parentheses, �(t→s) is also shown for the packet transport from t to s for comparison.
In (b), the BC at each vertex due to a packet transfer between s and t, b(s,t), is shown.
The BC b(s,t) is equal to b(t,s).
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bk =
∑

i 	=j
b
(i,j)
k =

∑

i 	=j

Ck(i, j)
C(i, j)

, (5)

where C(i, j) is the total number of geodesics connecting the vertices i and j,
and Ck(i, j) the number of those passing through the vertex k among them. The
definition of BC is also illustrated in Fig. 1b. Slightly different in the definitions,
the two quantities, load or BC, behave closely and their distributions are in-
distinguishable within our numerical resolution. Hence we shall not distinguish
them throughout this paper, unless otherwise noted explicitly.

2.1 The Load Distribution

Once a SF network is generated artificially or adopted from the real world, we
select an ordered pair of vertices (i, j) on the network, and identify the shortest
pathway(s) between them and measure the load on each vertex along the shortest
pathway using the modified version of the breath-first search algorithm intro-
duced by Newman [24] and independently by Brandes [25]. We have measured
load �i of each vertex i for SF networks with various γ. It is found numerically
that the load distribution PL(�) follows the formula,

PL(�) ∼ �−δ. (6)

When the index of the vertices are ordered according to the rank of the load,
we have �1 ≥ · · · ≥ �N . Then, the power-law behavior of the load distribution
implies that

�i∑
j �j

∼ 1
N1−βiβ

. (7)

with

δ = 1 + 1/β. (8)

The relation, (7), is valid in the region, �min < � < �max, where

�min ∼ �max/N
β ∼






ND if β < 1
ND/ lnN if β = 1
N2−βD if β > 1.

(9)

Based on numerical measurements of load exponents for a variety of SF networks,
we find that load exponent is likely to be robust, independent of the details of
network structure such as the degree exponent γ in the range, 2 < γ < 3, and
mean degree, directionality of edge, etc. We find that SF networks are likely to be
classified into two classes, say, class I and II. For the class I, the load exponent is
δ ≈ 2.2(1) and for the class II, it is δ ≈ 2.0(1). However, see Sect. 2.4 for further
discussions on the possibility of slight variation of δ on γ. The load exponent
for the class II seems to be exactly δ = 2 since it can be derived analytically for
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Fig. 2. Plot of the load distribution PL(�) versus � for various γ = 2.25 (�), 2.5 (�),
2.75 (◦) and 3.0 (�) in double logarithmic scales. The data are obtained from the
static model. The linear fit (solid line) has a slope −2.2. Simulations are performed for
N = 104 and m = 2 and all data points are averaged over 10 configurations. Lower
Inset: Same plot for γ = 4 (+), 5 (×), and ∞ (∗). The line having a slope −2.2 is
drawn to compare the data with the case for 2 < γ ≤ 3. Upper Inset: Plot of PL(�)
versus � for different m = 2, 4 and 6, but for the same γ = 2.5.

simple models. We may show that such different universal behaviors in the load
distribution originate from different generic topological features of networks.

For γ > 3, however, δ depends on γ in a way that it increases as γ increases.
Eventually, the load distribution decays exponentially for γ = ∞ as shown in
the lower inset of Fig. 2. Thus, the transport properties of the SF networks with
γ > 3 are fundamentally different from those with 2 < γ < 3. Note that (1)
and (6) combined gives a scaling relation between load and degree of a certain
vertex as

� ∼ k(γ−1)/(δ−1), (10)

provided the ranks of vertices in load and degree do not vary significantly. See
Fig. 9 and discussions in Sect. 3.

2.2 Real World and Artificial Networks Investigated

The networks that we find to belong to the class I with δ = 2.2(1) include:

(i) The co-authorship network in the field of the neuroscience, published in the
period 1991-1998 [17], where vertices represent scientists and they are connected
if they wrote a paper together.
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Fig. 3. The load distribution for (i), (iii), (iv), (xi), and (xiii).

(ii) The protein interaction network (PIN) of the yeast Saccharomyces cerevisiae
compiled by Jeong et al. (PIN1) [26], where vertices represent proteins and the
two proteins are connected if they interact.
(iii) The core PIN of the yeast S. cerevisiae by Ito et al. (PIN2) [27].
(iv) The metabolic networks for 5 species of eukaryotes and 32 species of bacteria
in [18], where vertices represent substrates and they are connected if a reaction
occurs between two substrates via enzymes. The reaction normally occurs in one
direction, so that the network is directed.
(v) The Barabási-Albert (BA) model [19] when the number of incident edges of
an incoming vertex m ≥ 2 where γ = 3.
(vi) The geometric growth model by Huberman and Adamic [28].
(vii) The copying model [29] where γ = 3.
(viii) The undirected or the directed static model [22] where γ = 3 or γin =
γout = 3.
(ix) The accelerated growth model proposed by Dorogovtsev et al. [30].
(x) The stochastic model for the PIN by Solé et al. [31].

For both (ii) and (x), the degree distribution is likely to follow a power-law
but there needs an exponential cutoff to describe its tail behavior for finite sys-
tem. However, it converges to a clean power-law for (x) as system size increases,
but the converging rate is rather slow [32]. Despite this abnormal behavior in
the degree distribution for finite system, the load distribution follows a pure
power law with the exponent δ ≈ 2.2(1) in (ii) and (x). The representative load
distributions for real world networks (i), (iii), and (iv) are shown in Fig. 3a.

The networks that we find to belong to the class II with δ = 2.0 include:

(xi) The Internet at the autonomous systems (ASes) level [33].
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(xii) The metabolic networks for 6 species of archaea in [18].
(xiii) The WWW within www.nd.edu domain [9].
(xiv) The BA model with m = 1 for γ = 3 [19].
(xv) The deterministic model by Jung et al. [34].

In particular, the networks (xiv) and (xv) are of tree structure, where the
edge load distribution can be solved analytically. The load distributions for real
world networks (xi) and (xiii) are shown in Fig. 3b. Since the load exponents of
each class are very close numerically, one may wonder if there exist really two
different universal classes apart from error bar. To make this point clear, we plot
the load distributions for the BA model with m = 1, 2 and 3 in Fig. 4, obtained
from large system size, N = 3 × 105. We can see clearly different behaviors
between the two load distributions for the cases of m = 1 (class II) and of m = 2
and 3 (class I) in the BA model with γ = 3.

2.3 Topology of the Shortest Pathways

To understand the generic topological features of the networks in each class,
we particularly focus on the topology of the shortest pathways between two
vertices separated by a distance d. Along the shortest pathways, we count the
total number of vertices M(d) lying on these roads, averaged over all pairs of
vertices separated by the same distance d. Adopting from the fractal theory,
M(d) is called the “mass-distance” relation. We find that it behaves in different
ways for each class; For the class I,M(d) behaves nonlinearly (Figs. 5a–b), while
for the class II, it is roughly linear (Fig. 5c–d). For the networks belonging to
the class I such as the PIN2 (iii) and the metabolic network for eukaryotes (iv),
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Fig. 5. The mass-distance relation for prototypical SF networks

M(d) exhibits a non-monotonic behavior (Fig. 5a–b), viz., it exhibits a hump
at dh ≈ 10 for (iii) or dh ≈ 14 for (iv). To understand why such a hump arises,
we visualize the topology of the shortest pathways between a pair of vertices,
taken from the metabolic network of a eukaryote organism, Emericella nidulans
(EN), as a prototypical example for the class I. Fig. 6a shows such a graph with
linear size 26 edges (d = 26), where an edge between a substrate and an enzyme
is taken as the unit of length. From Fig. 6a, one can see that there exists a blob
structure inside which vertices are multiply connected, while vertices outside
are singly connected. What is characteristic for the class I is that the blob is
localized in a small region.

For the class II, the mass depends on distance linearly, M(d) ∼ Ad for large
d (Fig. 6c–d). Despite the linear dependence, the shortest pathway topology for
the case of A > 1 is more complicated than that of the simple tree structure
where A = 1. Therefore, the SF networks in the class II are subdivided into
two types, called the class IIa and IIb, respectively. For the class IIa, A > 1
and the topology of the shortest pathways includes multiply connected vertices
(Figs. 6b and c), while for the class IIb, A ∼ 1 and the shortest pathway is
almost singly connected (Fig. 6d). Examples in real world networks in the class
IIa are the Internet at the AS level (A ∼ 4.5) and the metabolic network for
archaea (A ∼ 2.0), while that in the class IIb is the WWW (A ∼ 1.0).

The WWW is an example belonging to the class IIb. For this network, the
mass-distance relation exhibits M(d) ∼ 1.0d, suggesting that the topology of
the shortest pathway is almost singly connected, which is confirmed in Fig. 6d.
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Fig. 6. Topology of the shortest pathways. (a) The metabolic network of E. nidulans
(eukaryote) of length 26. (b) The Internet AS of length 10. (c) The metabolic network of
Methanococcus jannaschii (Archaea) of length 20. (d) WWW of www.nd.edu of length
20. In a and c, circles denote substrates, and rectangles denote intermediate states.

2.4 Crossover in Load Distributions Between Tree
and Loop Scale-Free Networks

The load exponents for various SF trees have been obtained analytically to be
δ = 2.0, independent of the degree exponent γ [35,36]. We investigate how the
value of the exponent δ = 2.0 changes as the number of loops increases. To this
end, we modify the BA model in such a way that a new vertex attaches one
or two edges to existing network 1 − p or p, respectively [37]. Then the mean
number of edges emanating from a new vertex is given by 〈m〉 = 1 + p. When
p = 0, the network is a tree, and the load exponent is confirmed to be δ = 2.0.
In addition, we find that the load exponent increases to δ � 2.2 by increasing
〈m〉 to 〈m〉 � 1.1 at which the edges connecting different branches of the tree
structure form sparse loops in a nontrivial manner. As shown in Fig. 7, the
value δ � 2.2 at 〈m〉 � 1.1 turns out to be robust, largely independent of the
degree exponent γ for 2 < γ < 3. Such a universal behavior persists as long as
〈m〉 is smaller than a γ-dependent characteristic value, 〈m〉c, beyond which δ
depends on γ. Moreover, we find that the plateau region of δ � 2.2 is extended
as the system size N increases as shown in Fig. 7. These data suggest that the
universal behavior of δ may hold in some finite region of parameter space in
the thermodynamic limit, for the sparse graph of BA model. Note that if one
measures the load exponent δ at 〈m〉 = 2 in finite size systems, the universal
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Fig. 7. The load exponent as a function of the mean number of edges 〈m〉 emanating
from a new vertex for various degree exponents γ in the BA model and different system
sizes, N = 104 (©) and N = 105 (�).

features could not be observed as Barthélemy noticed recently [38] in the static
model.

Barthélemy performed extensive numerical simulations of the load distribu-
tion of the static model and the BA model, finding that the robustness of the
load exponent fails even for 2 < γ < 3. Note that the definition of load he used is
slightly different from ours. He ignored the contributions of N−1 packets leaving
and another N−1 packets arriving at the vertex to load of a certain vertex, while
we counted them. The difference can be neglected for vertices with large load �
in the limit of N → ∞, however, in finite-size systems particularly those com-
patible with most real world networks comprising N = 103 ∼ 104 vertices, this
difference produces somewhat different value of δ. We also performed extensive
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Table 1. Comparison of the load exponent for the static model with m = 2: δ1 and δ2

are the measured values using the definitions of [22] and [38], respectively. “log” and
“cum” mean the measurement by log-binned and cumulative ways, respectively.

N γ δ1(log) δ1(cum) δ2(log) δ2(cum)
1 × 104 3.0 2.30(1) 2.34(5) 2.27(3) 2.30(3)
1 × 104 2.8 2.23(3) 2.22(5) 2.17(1) 2.19(1)
1 × 104 2.5 2.15(4) 2.13(3) 2.07(1) 2.10(1)
1 × 104 2.2 2.05(5) 2.00(4) 1.96(2) 2.01(2)
1 × 105 2.5 2.13(3) 2.10(2) 2.08(1) 2.10(1)
5 × 105 2.5 2.11(2) 2.08(2) 2.08(1) 2.07(1)

numerical simulations on a larger scale N = 5×105 than the size N = 104 shown
in Fig. 2 for the static model with γ ≈ 2.5 and m = 2 following both the original
definition and the new one of [38], confirming that indeed, δ turns out to have
weak γ dependency. Numerical values of δ measured newly are listed in Table 1.
However, the behavior of δ as a function of γ with m = 2 for the static model
is similar to the one shown in Fig. 7 for the BA model. Therefore, whether the
universal behavior of the load exponent indeed breaks down or it still holds in
some range of the model parameter space is still an open problem. Finally, notice
that real-world networks contain nontrivial degree-degree correlations, while the
static model does not have it. Thus it would be interesting to investigate how
the load exponent depends on the degree-degree correlation, which is in progress.
Conclusively, the problem of the universal behavior of the load exponent is not
established yet, and related analytic work is needed to clarify this issue.

3 Load-Load Correlation

Recently, SF networks are grouped into three types according to the behavior
of the degree-degree correlation coefficient [39,40], in a different aspect from the
classification of the load exponent. They are the ones exhibiting the assortative,
dissortative, and neutral mixing on their degree. For the network of the assorta-
tive (dissortative) mixing, called the assortative (dissortative) network, a vertex
with large degree tends to connect to vertices with large (small) degree, while
for the network of the neutral mixing, there is no such tendency. The assortative
network can be found in social networks such as the coauthorship network, the
actor network and so on, and the dissortative network in information networks
such as the Internet and the www, and in biological networks such as protein
interaction networks and neural networks. While such assortative and dissorta-
tive networks appear in real world, the neutral network, i.e., the network of the
neutral mixing on their degree, appears in in silico networks such as the BA
model and the copying model [29] with γ = 3.

The degree-degree correlation [41,42] was investigated in terms of the corre-
lation function between the remaining degrees of the two vertices on each side
of an edge. Here the remaining degree means the degree of that vertex minus
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one [39]. First one defines the joint probability eD(j, k) that the two vertices on
each side of a randomly chosen link have j and k remaining degrees, respectively.
Then the normalized correlation coefficient is defined as

rD =
1

σD(q)2
∑

j,k

jk{eD(j, k)− qD(j)qD(k)}, (11)

where qD(k) is the normalized distribution of the remaining degree qD(k) =
(k+1)PD(k+1)/

∑
j jPD(j), and σD(q)2 =

∑
k k

2qD(k)−[
∑
k kqD(k)]2. Recently

Newman called this quantity the degree assortativity coefficient [40]. For the
assortative (dissortative) networks, rD is positive (negative), and for the neutral
networks, rD = 0. On the other hand, the degree-degree correlation was also
investigated in terms of the mean degree of neighbors of a vertex with degree
k, denoted by 〈knn〉(k) [13]. For the assortative (dissortative) networks, 〈knn〉(k)
increases (decreases) with increasing k, while the neutral networks, 〈knn〉(k) is
independent of k.

For the BA-type model, it was shown that the load is related to the degree via
the relation, (10). Thus the vertices with larger degree are much more influential
to others in communications. Due to this relation, one may think that the load-
load correlation would behave similarly to the degree-degree correlation. Here
we show that while for the dissortative and neutral network, the load-load corre-
lation coefficients behave similarly to the degree-degree correlation coefficients,
for the assortative network, the relation (10) is nontrivial, leading to that the
load-load correlation is very weakly assortative, i.e., the mean load of neighbors
of a certain vertex with load �i is almost independent of �i.

To study the load-load correlation, we introduce the load-load correlation
coefficient, called the load assortativity coefficient, in analogy with (11):

rL =
1

σL(q)2
∑

�,m

�m{eL(�,m)− PL(�)PL(m)}, (12)

where eL(�,m) is the joint probability that the loads of the two vertices of a link
are � and m and σL(q)2 =

∑
� �

2PL(�) − [
∑
� �PL(�)]2. Moreover, similarly to

〈knn〉, we define the mean load of neighbors of a vertex with load �, denoted by
〈�nn〉(�), through which we can check if the load-load correlation is assortative
or dissortative.

We first check the load-load correlation for the network of the Internet on
the level of autonomous systems as of January 2000 [33] and the so-called non-
degenerate configuration model with γ = 3 [42,44,45], which belong to the dis-
sortative and the neutral network, respectively. For these networks, rL is −0.16
(< 0) and 0.02, respectively, which is close to their rD values of −0.18 and 0.01,
respectively. Moreover, 〈�nn〉(�) behaves similarly to 〈knn〉(k) as shown in Fig. 8a
and b. However for the assortative networks, the coauthorship network for ex-
ample, rL is considerably smaller than rD often by one order of magnitude and
is close to zero. The comparison of rL and rD for various social networks are
tabulated in Table 2. The mean load 〈�nn〉(�) of neighbors of a vertex with load



Classes of the Shortest Pathway Structures in Scale Free Networks 117

Table 2. Size N , mean degree 〈k〉, degree assortativity coefficient rD, load assortativity
coefficient rL for a number of social networks.

Type Name N 〈k〉 rD rL Ref.
Videomovie 29824 33.7 0.22 0.024 [43]

Actor TVminiseries 33980 73.0 0.38 0.033 [43]
TVcablemovies 117655 55.5 0.14 0.035 [43]

TVseries 79663 118.4 0.53 0.013 [43]
Neuroscience 205202 11.8 0.60 0.057 [17]

Coauthor Mathematics 78835 5.50 0.59 0.091 [17]
cond-mat 16264 5.85 0.18 0.086 [16]
arXiv.org 52909 9.27 0.36 0.057 [16]
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Fig. 8. Plot of 〈knn〉(k) (◦) and 〈�nn〉(�) (•) for (a) the Internet on the level of au-
tonomous systems (dissortative), (b) the non-degenerate configuration model with
γ = 3 (neutral), and (c) the coauthorship network in the field of neuroscience (as-
sortative). All data are obtained from a single configuration.

� increases with increasing �, however, the increasing rate is very low compared
with that of 〈knn〉(k), i.e., it depends on � very weakly (Fig. 8c). Such a behavior
appears in other social networks too. Since load is regarded as a good measure
of centrality, it implies that the mean influence of neighbors of a person is al-
most the same regardless of the influence of the centered person. So a person is
surrounded by almost the same influential people on average no matter how in-
fluential the centered person may be, although a person who is acquainted with
many people is likely to connect to people who also is acquainted with many
others.

To understand the abnormal behavior of the load-load correlation in detail,
we examine the degree-load relation. In Fig. 9, we compare the degree-load rela-
tion �(k) for the three types. While the relation of (10) holds for the dissortative
and the neutral networks, it breaks down for large k for the assortative networks.
Rather the loads of large k vertices cover wide range of values. Since the ver-
tices with large degree are located next to each other in the assortative network,
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Fig. 9. Plot of the degree-load relation for (a) the Internet on the level of autonomous
systems (dissortative), (b) the non-degenerate configuration model with γ = 3 (neu-
tral), and (c) the coauthorship network in the field of neuroscience (assortative).

the shortest pathways between a certain pair of vertices do not necessarily pass
through such nearby hubs at the same time. Thus the loads of the vertices with
large k fluctuate and the degree-load correlation is nontrivial.

4 Diameter Change Distribution

One of the powerful ways of examining the intrinsic nature of a complex system
is to observe how emerging patterns change by small perturbation applied to
the system. In complex systems, such a change or response is so sensitive to the
details of the perturbation that it is extremely diverse. In such a case, it is not
adequate to predict how much the change would be definitely. Recently, Parisi
has argued [46] that the prediction for the responses to small perturbations in
complex systems can be made in a probabilistic way. He showed examples of
protein structures in biological systems and spin glasses in physical systems. In
case of proteins, subject to small external perturbations such as the change in
pH or the substitution of a single amino acid, they would fold to a completely
different 3D structure but with practically the same free energy. In case of the
disordered magnetic systems, each spin responds to a slowly varying external
field by changing its orientation, forming a series of bursts, known as Barkhausen
noise [47]. The number of spins bursting depends on the disorder strength of the
system, following a power-law distribution at a critical strength of disorder. The
prediction of the number of spins burst in this case can only be probabilistic. All
these examples aptly illustrate how the concept of probabilistic prediction may
apply as a new paradigm in modern science.

In this section we study how SF networks respond to small perturbations
and check if the concept of probabilistic prediction can be applied. For this pur-
pose, we investigate a simple problem of diameter change when a single vertex
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is removed from the system. Diameter, defined as the average distance between
every pair of vertices in a network, is a simple yet fundamental quantity of SF
networks to characterize the small-world nature, and can be thought of as a
measure reflecting the efficiency of a network. Our main interest is how much
the efficiency of a network would be affected by the removal of a single vertex.
When a vertex is removed, each pair of remaining vertices whose shortest path-
way had passed through the removed vertex should find detours, resulting in
the rearrangement of shortest pathways over the network. Thus the diameter
change occurs in a collective manner. From the extensive numerical calculations
for a number of SF network models and real-world examples, we find that the
diameter changes indeed are very diverse and crucially depend on the degree
of the removed vertex. When a vertex with a few number of connections is re-
moved, the diameter changes little. However, when a vertex with a large number
of connections is removed, the diameter change is drastic, exhibiting a power-law
distribution with an exponent ζ,

Pc(∆) ∼ ∆−ζ (13)

for large ∆. Here ∆ is the dimensionless relative diameter change defined as
the diameter change caused by the removal of a certain vertex divided by the
original diameter before the removal, and Pc(∆) is its distribution. Moreover the
exponent ζ turns out to be robust for various SF networks, insensitive to the
degree exponent γ for 2 < γ ≤ 3.

To be specific, we consider an undirected SF network with finite number of
vertices N and measure the diameter of the network. Note that we limit our
interest to undirected networks only in this work. Next we remove a certain
vertex i and measure the diameter Di of the rest of the network. Measuring a
dimensionless quantity, ∆i = (Di −D0)/D0 for all i, where D0 is the diameter
of the original unperturbed network, we obtain the distribution of ∆ for the
network. Note that our case is different from the previous study of the robustness
of SF networks [48,49] where vertices are removed successively. In our case, on
the other hand, only a single vertex is removed each time. When a certain vertex
is removed, the network may disintegrate into more than one cluster. In such
cases, Di is calculated only within the largest cluster. The diameter can be
measured via a simple breadth-first search algorithm. To obtain the distribution
of the diameter changes, we need the computation time of order O(N3).

The diameter change ∆i by the removal of a certain vertex i in such SF
networks can be positive or negative, and the histogram of the diameter changes
is highly centralized around ∆ = 0 (Fig. 10). However, it exhibits a fat tail for
∆ > 0 (the inset of Fig. 10). For the static model with γ = 3, for example, the
case of small diameter changes in the range |∆| < 2×10−4 occurs with frequency
as high as 96%. Thus the effect of a vertex removal usually is negligible as a whole,
which is manifested by the exponentially bounded fluctuations of the diameter
around its original value. We estimate the N -dependence of such small diameter
changes in a mean-field-type approach. It is known that the diameter d0 depends
on the number of vertices as D0 ∼ lnN for random graph and D0 ∼ lnN/ ln lnN
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[52] for the BA model [19] with γ = 3. When a vertex is removed, the diameter
may be reduced as D ∼ ln(N − 1) or D ∼ ln(N − 1)/ ln ln(N − 1), both leading
to ∆ ≈ −1/N lnN for large N . Thus when N = 104, ∆ ∼ O(10−5), which is
comparable to numerical values of the central part in Fig. 10. On the other hand,
substantial (about 4%) vertices have a serious impact on the system’s efficiency
and they indeed contribute to the positive tail of the histogram, showing the
power-law behavior, (13). We find that such large diameter changes are mainly
due to the removal of a vertex with large degree.

Let us investigate the power-law behavior for large∆ in details. The exponent
ζ seems to be robust as ζ ≈ 2.2(1) as long as 2 < γ ≤ 3 for the static model.
Similar behaviors are found in other model networks (ii)–(vii) listed in Table 3.
These include the SF networks showing nontrivial degree-degree correlations
[39]. For γ > 3, on the other hand, as γ increases, the power-law behavior sets
in only for larger values of ∆ and the exponent ζ increases with γ. Eventually
the diameter change distribution for the Erdős-Rényi random networks decays
exponentially.

To see such universal behavior of ζ in real world, we consider a couple of
real-world networks, the PIN and the Internet. For the PIN of the yeast S.
cerevisiae [51], we also find a power law in the diameter change distribution
with an exponent ζ ≈ 2.3(1) (Fig. 11), consistent with the one obtained for
various model networks, including the one proposed as its own in silico model
(vii) [31]. For the Internet at the autonomous systems level [33], the diameter
change distribution again follows a power law, however, with a different exponent
ζ ≈ 1.7(1) (Fig. 12). The smaller exponent ζ indicates that the effect of the
removal of vertices contributing to the tail of the distribution is much more
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Table 3. Summary of the results for various SF networks. Tabulated for each network
are the degree exponent γ, the diameter change exponent ζ, and the betweenness
centrality exponent η [35].

System γ ζ η ref.
(i) Static model 2.2–3.0 2.2(1) 2.2(1) [22]
(ii) Barabási-Albert model 2.2–3.0 2.2(1) 2.2(1) [19]
(iii) Copying model 2.2–3.0 2.2(1) 2.2(1) [29]
(iv) Fitness model 2.25 2.2(1) 2.2(1) [50]
(v) Accelerated-growth model 3.0(1) 2.2(1) 2.2(1) [30]
(vi) Huberman-Adamic model 3.0(1) 2.2(1) 2.2(1) [28]
(vii) PIN model – 2.2(1) 2.2(1) [31]
(viii) PIN of the yeast 3.2(2) 2.3(1) 2.3(1) [51]
(ix) Internet at the autonomous systems level 2.1(1) 1.7(1) 2.0(1) [33]
(x) Adaptation model 2.1 1.7(1) 2.0(1) [14]
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Fig. 11. The diameter change distribution Pc(∆) for the PIN of the yeast S. cerevisiae.
The slope of the fit line (dashed) is −2.3, drawn for the eye. Upper inset: Plot of ∆(�)
vs. �. The slope of the straight line is 1.1, drawn for the eye. Lower inset: The largest-
cluster-size change distribution Ps(δS). Here δS is normalized by N . The slope of the
fit line is −3.0, drawn for the eye.

severe than the previous cases with ζ ≈ 2.2 [(i)–(viii) in Table 3]. To confirm
the novel value of ζ for the Internet, we perform the same calculations for its in
silico model, called the adaptation model [14], and indeed obtain ζ ≈ 1.7 for it,
too. The two different behaviors of the diameter change distribution are rooted
from distinct topological features of shortest pathways of each case.

Interestingly, the networks (i)–(viii) in Table 3 having the diameter change
exponent ζ ≈ 2.2 belong to the class I, and the values of ζ and δ coincide with
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Fig. 12. The diameter change distribution Pc(∆) for the Internet at the autonomous
system level. The slope of the fit line (dashed) is −1.7, drawn for the eye. Upper inset:
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each other within our numerical resolutions, while they are different for the class
II. Empirically, the rank of a vertex in � and that in ∆ are likely to be the same
for vertices with large degrees. If then, the relation PL(�)d� ∼ Pc(∆)d∆ would
hold asymptotically, leading to

∆(�) ∼ �(δ−1)/(ζ−1), (14)

for large �. Indeed, the slopes in the double logarithmic scale in the upper insets
of Figs. 11 and 12 are 1.1(1) for the PIN and 1.4(1) for the Internet, respectively,
consistent with the predictions from the formula, (14). Thus the two classes, the
classes I and II, are also categorized by the diameter change distribution and
the distinction between them can be observed more clearly through it.

Our finding that the diameter change distribution is also classified into the
classes I and II following those for load distribution may be rooted from the
fact that both quantities, diameter and load, depend on universal features of
the shortest pathways topology between a vertex pair in networks. When the
sum rule [53],

∑
k �k ∼ D, is applied, one can see immediately that the diameter

change distribution is the same as the total load change distribution. On the
other hand, the networks belonging to the class II are more sparse and ramified
than those in the class I, so that the Internet is more fragile by the removal of a
single vertex than the PIN. We compare the distribution of the size change δS
of the largest cluster for the PIN and the Internet by a single vertex removal.
As shown in the lower insets of Figs. 11 and 12, the giant cluster in the Internet
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becomes much smaller than in the PIN. Thus the number of vertex pairs con-
nected after the removal becomes much smaller in the Internet than in the PIN.
Consequently, the difference of the exponent ζ between the two classes appears
much larger than that of the exponent δ in the class II. However, it is not clear
how the power-law behavior in Pc(∆) arises and what determines its exponent.

5 Conclusions and Discussion

We have introduced a quantity called load to study a transport property of data
packet on SF network, finding that the load distribution follows a power law with
exponent δ. Interestingly, the load exponent δ seems to be robust, independent
of the details of network structures. So far, we have found that there exist two
different classes where δ ≈ 2.2(1) or 2.0. The classification is mainly rooted from
generic topological features of the shortest pathways between a pair of vertices.
For the former, most shortest pathways are made of multiple pathways and have
a blob structure, while for the latter, it is effectively a tree. Whether the load
exponent δ is strictly universal in the sense of critical phenomena and renormal-
ization group is now an open question. Initially, we conjectured it to be so based
on real world network data and topological difference of the shortest pathways.
Recently, however, it was observed [38] that the universality does not hold for the
static model as γ approaches 2. On the other hand, we have studied the crossover
behavior of the load exponent from a tree to looped structure as the number of
loops increases in the BA model. The numerical result indicates two aspects:
On one hand the universal behavior may still hold in the thermodynamic limit
of some in silico model networks, however, on the other hand the universality
of the load distribution may not hold for real world class I networks. Further
studies are needed to resolve this controversial issue. The contents of this review
article are mainly based on our works published in [22,35,37,53–55].
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31. R. Solé, R. Pastor-Satorras, E. Smith, and T. Kepler, Adv. Complex. Syst. 5, 43

(2002).
32. J. Kim, P. L. Krapivsky, B. Kahng, and S. Redner, Phys. Rev. E 66, 055101(R)

(2002).
33. Meyer, D. (2001) University of Oregon Route Views Archive Project

(http://archive.routeviews.org).
34. S. Jung, S. Kim, and B. Kahng, Phys. Rev. E 65, 056101 (2002).
35. K.-I. Goh, E. Oh, H. Jeong, B. Kahng and D. Kim, Proc. Natl. Acad. Sci. USA

99, 12583 (2002).
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Abstract. We study the optimal distance �opt in random networks in the presence of
disorder implemented by assigning random weights to the links. The optimal distance
between two nodes is the length of the path for which the sum of weights along the path
(“cost”) is a minimum. We study the case of strong disorder for which the distribution
of weights is so broad that its sum along any path is dominated by the largest link
weight in the path. We find that in Erdős-Rényi (ER) random graphs, �opt scales as
N1/3, where N is the number of nodes in the graph. Thus, �opt increases dramatically
compared to the known small world result for the minimum distance �min, which scales
as log N . We also find the functional form for the probability distribution P (�opt) of
optimal paths. In addition we show how the problem of strong disorder on a random
graph can be mapped onto a percolation problem on a Cayley tree and using this
mapping, obtain the probability distribution of the maximal weight on the optimal
path.

1 Introduction

Much attention has been focused on the topic of complex networks characterizing
many biological, social, and communication systems [1–3]. The networks can be
visualized by nodes representing individuals, organizations, or computers and
by links between them representing their interactions. The classical model for
random networks is the Erdős-Rényi (ER) random graph where two nodes are
chosen randomly from the total N nodes in the system and are connected by a
link [4]. An important quantity characterizing networks is the minimum distance
�min between two nodes in the network. For the Erdős-Rényi random graph, �min
scales as logN , consistent with the “six degrees of separation” concept (e.g., if
N = 106, � ≈ 6).

Here we study a more realistic problem in which all links are not assumed
to be equivalent. Hence we assign to each link a weight or “cost.” For example,
the cost could be the time required to transit the link, e.g., there are often many
traffic routes from point A to point B with a set of delay times τi associated with
each link along the path. The fastest (optimal) path is the one for which

∑
i τi is

a minimum, and often the optimal path has more links than the shortest path.

L. Braunstein, S. Buldyrev, S. Sreenivasan, R. Cohen, S. Havlin, and H. Stanley, The Optimal Path
in an Erdős-Rényi Random Graph, Lect. Notes Phys. 650, 127–137 (2004)
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If the distribution of weights is such that all the links have the same weight,
the average length of the optimal path between any two nodes is the minimal
length �min. In that case it is well known that �min ∼ logN [5]

If the distribution is narrow, the average length of the optimal path �opt, in
general, is greater than �min but scales the same as �min [6,7]. If the random
distribution is broad, in the limit of infinite broadness, the disorder is called
“strong” and only the largest weight in the path dominates the sum. The strong
disorder limit is implemented by assigning to each link a potential barrier εi
so that τi is the waiting time to cross this barrier. Thus τi = eβεi , and the
optimal path corresponds to the minimum (

∑
i τi) over all possible paths. When

β = 1/kT → ∞, only the largest τi dominates the sum. Thus T → 0 (very low
temperatures) corresponds to the strong disorder limit.

We focus here on the case of strong disorder. This is believed to be the case
for many computer and traffic networks, since the slowest link in communication
networks determines the connection speed. We study this problem both theo-
retically and numerically and find that for ER random graphs �opt, the average
length of the optimal path, scales as N1/3.

2 Theoretical Arguments

To obtain the optimal path in the strong disorder limit, we present the following
theoretical argument. It has been shown [8,9] that the optimal path for β →∞
between two nodes A and B on the network can be obtained by the following
algorithm:

1. Sort the links by descending weight.
2. If the removal of the highest weight link will not disconnect A from B –

remove it.
3. Go back to step 2 until all links have been processed.

Since the link weights are random, so is the ordering. Therefore, in fact, one
needs not even select link weights to begin with. This “bombing” algorithm can
be replaced by simply removing randomly chosen links one at a time, where an
link is not removed if its removal will cause the connectivity between A and B
to be lost. The final path left is the optimal path between A and B in the limit
β →∞.

Since randomly removing links is a percolation process, the optimal path
must be on the percolation backbone connecting A and B. Since the network
is not embedded in space but has an infinite dimensionality, we expect from
percolation theory that at criticality loops are not relevant and the random
graph can be approximated by a Cayley tree with a Poisson degree distribution.
Thus, the shortest path must be the same as the optimal path. It is also known
from percolation theory on the Cayley tree that at criticality the average mass
S of the cluster with �min branching generations scales as �2min [10]. Since the
mass S of the giant component of the graph scales at criticality as N2/3 [11], it
follows that
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Fig. 1. The optimal path length 〈�opt〉 averaged over 105 realizations of strong disorder
as a function of N1/3 computed by the two methods discussed in the text:(i) the results
obtained using the “bombing” approach (◦) and (ii) the results obtained using the
ultrametric approach (×).The straight line is the linear fitting of the results showing
for large N the linear relation 〈�opt〉 = 3.27N1/3 − 7.11. This result supports the
theoretical value 1/3.

�min ∼ �opt ∼
√
S ∼ Nνopt , (1)

where νopt = 1/3 [12].
To test (1), we apply two numerical approaches (Fig. 1). The first approach

is to find the optimal path (which minimizes the sum of weights) using the
ultrametric approach described in [8]. The second approach is based on the
“bombing” algorithm of [8].

3 Numerical Analysis

Next we describe in detail the two numerical methods for computing �opt between
any two nodes in strong disorder. We can assume that the energy spectra εi is
discrete. We can make β so large that, even for the closest values of energy
spectra, the waiting times τi = exp[βεi] differ by at least a factor of 2. In this
limit, the sum is dominated by the maximum value exp[βεmax]. When all the
links on the paths have different weights, the optimal path is the one that has the
smallest maximal link weight between all the paths. In general, as a consequence
of the existence of loops, there are links in common between different paths. Such
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a link might provide the maximum εi of both paths. In this case we compare
the second highest weight and take the path with the lower value and so forth
until the optimal path is determined. This procedure is equivalent to comparing
integers written in binary codes and hence indeed minimizes

∑
τi for β →∞.

First, we describe the ultrametric algorithm [9]. We assign weights to all the
links τi = exp[βεi], where 0 ≤ εi < 1 is taken from a uniform distribution. Next,
we start from one node (the origin) and visit all the other nodes connected to
the origin using the Dijkstra algorithm [13]. If a node at distance �0 (from the
origin) is being visited for the first time, this node will be assigned a list S0
of weights τ0i, i = 1 · · · �0 of the links by which we reach that node sorted in
descending order,

S0 = {τ01, τ02, τ03, . . . , τ0�0}, (2)

with τ0j > τ0j+1 for all j. If we reach a node for a second time by another path
of length �1, we define for this path a new list S1,

S1 = {τ11, τ12, τ13, . . . , τ1�1}, (3)

and compare it with a S0 previously defined for this node.
Different sequences can have weights in common because some paths have

links in common, so it is not enough to identify the sequence by its maximum
weight; in this case it must also be compared with the second maximum, the third
maximum, etc. We define Sp < Sq if there exists a value m, 1 ≤ m ≤ min(�p, �q)
such that

τpj = τqj for 1 ≤ j < m and
τpj < τqj for j = m, (4)

or if �q > �p and τpj = τqj for all j ≤ �p.
If S1 < S0, we replace S0 by S1. The procedure continues until all paths have

been explored and compared. At this point, S0 = Sopt, where Sopt is the sequence
of weights for the optimal path of length �opt. In reality it is highly inefficient
to compare all possible paths. This is why we use the Dijkstra algorithm. The
Dijkstra algorithm explores only a limited set of paths, guaranteeing that the
optimal path belongs to this set. The algorithm is implemented as follows. At the
beginning we assign to every node i except one that we choose as our “origin”,
a value Si = {∞}. The origin is assigned a value S0 = {0}. The search for the
optimal path follows a procedure akin to “burning” where the “fire” starts from
our chosen origin. In the first step, we burn all the neighbors of the origin and
replace the values assigned to them by the weight of the link that connects them
to the origin. For example, if node i is a neighbor of the origin connected to it
through a link which carries weight 10, then Si = {10} after the first step. At
this point all the neighbors of the origin form what we call the “burning set”
and the origin is deemed “extinguished”. Now the algorithm proceeds as follows.
That member of the burning set, which has the lowest value of Si assigned to it,
is deemed extinguished, and the same burning procedure starts with the node
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i as the origin. The only difference is that now we burn a node j if and only
if its weight sequence Sj is larger than Si

⋃
τij , where τij is the weight of the

link connecting nodes i and j and
⋃

denotes conjunction. If node j is already
burning, we do not include it into the burning set again, but just replace its
Sj with Si

⋃
τij . This procedure guarantees that a node, once extinguished, can

never again become part of the “burning set”. Moreover the weight sequence Si
for an extinguished node yields weight of the optimal path connecting it with the
origin. Once Dijkstra algorithm is completed, we have a minimal spanning tree
[14] constructed on our graph. Dijkstra algorithm in the strong disorder limit is
also equivalent to that of invasion percolation [15,16].

Using this method, we obtain systems of sizes up to 4000 nodes, typically
105 realizations of disorder. We compute 〈�opt〉 by averaging the length of the
optimal path for all the nodes of the configuration and over all realizations.

An alternative method of obtaining the optimal path in strong disorder is
called the “bombing” algorithm [8]. We first choose a pair of nodes on the graph
and begin removing links randomly, making sure that the connectivity between
the two chosen nodes is not destroyed as each link is removed. The last path
remaining is equivalent to the optimal path obtained by the ultrametric algo-
rithm.

The bombing algorithm is slow, as one must test the connectivity after re-
moval of each link. To improve the speed, we first find the minimal path in the
graph and then select links in random order. We remove the selected link from
the graph. If the removed link belongs to the minimal path, we check if the con-
nectivity between the two nodes is still present and recompute the new minimal
path. If the connectivity between the two nodes is destroyed, we restore the link.

The advantage of this procedure is that one has to test for connectivity
only if the selected link appears to belong to the minimal path. Since checking
the connectivity is the most time consuming part in the original “bombing”
algorithm, we could reach systems of sizes up to 217 nodes with 105 realizations
of weight disorder.

Figure 1 demonstrates that both algorithms yield very similar results, sup-
porting the theoretical result 〈�opt〉 ∼ N1/3. Indeed, numerical values of 〈�opt〉
averaged over 105 realizations of disorder have a linear behavior as a function of
N1/3, confirming the theoretical value νopt = 1/3.

We also study the probability distribution P (�opt) of optimal path lengths on
the network. The scaled curve for P (�opt) for different network sizes is shown in
Fig. 2 on a log-log plot. We find that there are two regimes in this distribution,
the first one being a power law P (�opt) ∼ (�opt)α which is evident from the
figure, with α ≈ 2. The second regime can be well approximated by a stretched
exponential P (�opt) ∼ e−C�

θ
opt where C is a constant and θ is close to 2. This

leads us to the conjecture that the distribution may have a Maxwellian functional
form:
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Fig. 2. Scaled probability distributions P (�opt) of optimal path lengths for network
sizes N = 210, 211, . . . , 217. The curve represents a Maxwellian fit given by (5).

P (�opt) =
4�2opte

−(�opt/lo)2

√
πl3o

, (5)

Where lo =
√
π〈�opt〉/2 is the most probable value of �opt. The solid line in the

figure is the plot of this function and as seen it agrees well with our numerical
results, especially for large N .

Finally, we repeat our simulations for the case in which disorder weights are
associated with the nodes of the graph, and obtain the same scaling laws as for
the disordered links case.

It should be pointed out that the above results concerning �opt practically do
not depend on the average degree 〈k〉 of the random graph for large 〈k〉  2 and
are the same even for the complete graph with k = N − 1. However, as we will
see in the next section, the distribution of the maximal weight τmax drastically
depends on 〈k〉.

4 Probability Distribution of the Maximal Weight
on the Optimal Path

Now, we address another aspect of the problem, which is the probability distri-
bution of the maximal weight τmax or equivalently the maximal random number
εmax along the optimal path in a strongly disordered random graph. As we men-
tioned earlier, the problem of the optimal path on a random graph in the strong
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disorder limit can be mapped onto a percolation problem on a Cayley tree with
a degree distribution corresponding to the random graph and with a fraction p
of its links conducting. In order to further develop this analogy, we will show
that the distribution of the maximal random number εmax along the optimal
path can be expressed in terms of the order parameter P∞(p) in the percola-
tion problem on the Cayley tree, where P∞(p) is the probability that randomly
chosen node on the Cayley tree belongs to the infinite cluster. The motivation
for the mapping on the Cayley tree comes from the following. Suppose A and
B are two nodes in the random graph. Now, if we start our search for the op-
timal path between nodes A and B beginning at node A, then in the limit of
the graph being of infinite size, the probability that we will visit a previously
visited node after a finite number of steps tends to zero. Hence, we can assume
that our search is equivalent to the search on a Cayley tree. If the original graph
has a degree distribution pk, the probability that we reach a node with a degree
k by following a randomly chosen link on the graph, is equal to kpk/〈k〉, where
〈k〉 ≡∑∞

k=0 kpk is the average degree. This is because the probability of reaching
a given node by following a randomly chosen link is proportional to the number
of links or the degree k of that node. Also, if we arrive at a node with degree
k, the total number of outgoing branches is k − 1. Therefore, from the point
of view of the branching process [17–22] represented by the Cayley tree , the
probability to arrive at a node with k − 1 outgoing branches (descendants) by
following a randomly chosen link is kpk/〈k〉.

In the asymptotic limit, where the optimal path between the two points
is very long, the probability distribution for the maximal weight link can be
obtained from the following analysis. Let us assume that the probability of not
reaching the nth generation of descendants starting from a given node of the
Cayley tree whose links conduct with a probability p, is Qn. Suppose we are at
a node whose outgoing degree is 2. Then the probability that starting from this
node, we will not reach the nth generation of its descendants is the sum of three
terms:

1. The probability that both outgoing nodes are not conducting : (1− p)2
2. The probability that both outgoing links conduct, but the nodes reached by

following them, do not have n− 1 generations of descendants : p2Q2
n−1

3. The probability that one of the two outgoing links conduct but the node
reached by following the conducting link does not have n− 1 generations of
descendants : 2(1− p)pQn−1

Therefore, in this case

Qn(p) = (1− p)2 + p2Q2
n−1 + 2(1− p)pQn−1 (6)

which on simplification becomes

Qn(p) = ((1− p) + pQn−1)2. (7)

Following this argument for the case where a node has m outgoing links, the
probability that starting from this node, we can not reach n generations, is



134 L. Braunstein et al.

Qn(p) = ((1− p) + pQn−1)m. (8)

Now in the case of a Cayley tree with a variable degree such as ours, we also
have to incorporate a factor which accounts for the probability that the node
under consideration has a given number of outgoing links. Thus for a node on
the Cayley tree, the probability that it does not have descendants in the nth
generation can be obtained by applying a recursion relation

Ql(p) =
∞∑

k=1

pkk((1− p) + pQl−1)k−1/〈k〉 (9)

for l = 1, 2, ..., n and the initial condition Q0 = 0, which indicates that a given
node is always present in generation zero of its descendants.

A randomly chosen node A of a random graph has k outgoing links with
probability pk which differs from the corresponding probability on the Cayley
tree, (k + 1)pk+1/〈k〉. Thus this node has a slightly different probability Q̃n of
not having descendants in its nth generation:

Q̃n(p) =
∞∑

k=1

pk((1− p) + pQn−1)k. (10)

If we denote by fn(p) , the probability that starting at a randomly chosen
node we can reach, or survive up to, the nth generation, then

f̃n = 1− Q̃n, fl = 1−Ql (11)

for 0 ≤ l < n and hence,

f̃n = 1−
∞∑

k=1

pk(1− pfn−1)k (12)

while for 1 ≤ l < n

fl = 1−
∞∑

k=1

pkk(1− pfl−1)k−1/〈k〉 (13)

and f0 = 1.
If n goes to infinity, this formula converges exponentially to the probability

P∞(p) ≡ liml→∞ fl(p) for a node to be connected to infinity for any p except
for pc = 〈k〉/∑∞

k=1 pkk(k− 1), where the convergence is a power law [17]. Anal-
ogously, we define the probability that node A on a random graph is connected
to infinity as P̃∞ ≡ limn→∞ f̃n. In the asymptotic limit of the optimal path
problem, we have a pair of nodes A and B separated by a very long path �opt
on a giant component of a random graph. The probability Π(p), that they will
be connected at given p, provided that they are connected at p = 1, can in fact
be approximated by the probability that both of them are connected to infinity
and hence



The Optimal Path in an Erdős-Rényi Random Graph 135
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Fig. 3. The probability distribution of the maximal random number εmax along the
optimal path obtained using simulations on a random graph with 〈k〉 = 4 (◦) and
using the analytical method on a Cayley tree with Poisson degree distribution and
〈k〉 = 4 (line).The simulations involve 105 network realizations and are carried out on
a network of 216 nodes. The distribution of εmax for small �opt does not obey (17), since
it is derived in the limit of large �opt. Also the distribution of εmax does not obey (17)
for very large �opt when the effect of finite size N becomes evident. Thus, to achieve
the best agreement with (17), we construct the histogram of εmax only if �opt is in the
range 40 < �opt < 120.

Π(p) =
[
P̃∞(p)/P̃∞(1)

]2
. (14)

Using (13) in the limit l → ∞, for the Poisson degree distribution pk =
xke−x/k! with x ≡ 〈k〉, we conclude that P∞(p) must satisfy the following
transcendental equation

P∞(p) = 1− e−〈k〉pP∞(p), (15)

which always has a trivial root P∞ = 0. For p > pc = 1/〈k〉, (15) has a positive
root, which gives us the required solution for P∞(p) > 0. For p ≤ pc, positive
roots do not exist and P∞(p) = 0. Finally, using (12) and (14), we have

Π(p) =
[
1− e−〈k〉pP∞(p)

]2
/
[
1− e−〈k〉P∞(1)

]2
, (16)

where P∞(p) and P∞(1) are the solutions of (15).
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In the bombing algorithm, the largest random number on the path, εmax,
is equal to the fraction of remaining bonds at which the connectivity would be
lost for the first time, if we remove bonds in the descending order of ε. Thus
the probability P (εmax ≤ p) that connectivity is not lost when only a fraction
p of bonds remains is equal to Π(p). The probability density of the maximum
random number εmax is thus equal to the derivative of this function with respect
to p:

P (εmax) =
d

dp
Π(p)|p=εmax (17)

In Fig. 3 we compare the probability distribution of εmax computed by sim-
ulations on a strongly disordered random graph with 〈k〉 = 4 and the analytical
Cayley tree approximation given by (16) and (17) with a Poisson degree dis-
tribution and 〈k〉 = 4. The curves coincide very well, indicating the excellent
agreement between the theoretical analysis and simulation.
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Abstract. Real, mostly socially rooted networks have the tendency to form the sim-
plest morphological structures observable: triangles, or in other words mutually linked
triples of nodes. This is captured by the concept of clustering. We review a few mile-
stones in the quantitative description of this feature, together with selected models
that reproduce certain attributes of clustering in various networks. Lastly, we present
an example of problems faced when solving a simple relevance-based model by one of
the common methods in widespread use.

1 Introduction

In this paper we review a few aspects of what can be considered to be one
of the simplest ways of describing nontrivial network structures: clustering or
transitivity. The term clustering has been borrowed from the social sciences, but
its meaning has become somewhat narrowed down to refer to the prevalence
of connected triangles in the network. It is in other words a common observed
feature in many real networks that if a node is connected to either node of a
connected pair of vertices, then it is likely that it is also connected to the other
node of the pair. In large networks, it becomes a matter of quantitative analysis
to define a measure of clustering, either locally or globally. The local clustering
coefficient Ci of a node i has been introduced [1] to express the connectedness
of the node’s neighbors with each other:

Ci =
number of direct links between neighbors of i

number of all such possible links
. (1)

When the degree of the node is given as ki, then the denominator in (1) is yielded
as ki(ki − 1)/2. An overall clustering coefficient C characteristic of the network
can be taken to be the algebraic average of all Ci’s. The clustering coefficient
used by social scientists differs from the expression above, insofar it is defined
only globally and basically relates the number of triangles to the number of paths
of length two [2].

Indeed, the clustering coefficients measured on many types of networks are
markedly larger than in random graphs, and most probably have a non-zero
thermodynamic limit, in contrast to random graphs again. Thinking about net-
works in the human societies or networks based on mutual introduction rules,
it is easy to conceive how or why dense clustering may emerge. On the other
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hand, networks on the technological front may be expected to be different even
qualitatively from the “spontaneous” networks in the above sense, for the reason
that they often evolve through any kind of nonlocal optimization minimizing a
cost function. In this sense the WWW, though, is in fact closer in nature to
human contacts when shared interest dominates over utility or energy costs of
man-made networks.

Many models are now able to give account for ever more observed details of
networks, the clustering coefficient being one of them. Qualitative comparison
is often made on the basis of the clustering coefficient dependence on the node
degree, that is, the function that gives the expected value of the coefficient for
nodes with the same degree. As the following sections illustrate, this function
many times is simple enough to warrant further investigation.

As a factor of network structure, clustering influences the dynamical pro-
cesses on the network (diffusion, random walk, search), so far as it is related
to the the number of loops of the shortest size possible. Results that directly
connect clustering and the processes are more scarce. A less-researched subject
is the number of loops of higher order than 3, which is particularly appealing
when one is to characterize the networks better or when the goal is to find the
best matching model to a given network, for instance [3].

Large local or global clustering can be an indication of hidden modularity in
the network, especially when the network itself is the representation of certain
structures or functions as is the case for example in social or metabolic net-
works [4,5]. Modularity is inherently subject to a wide variety of interpretations,
due to the many degrees of freedom that can go into designing the clustering
algorithms that classify the nodes into modules [6]. The clustering coefficient in-
side modules can still be expected to be considerably higher than in intermodular
regions.

The empirical data is usually analyzed in terms of the average clustering
coefficient C and the degree-dependence of the same, C(k). Network motifs [7,
8], as triangles, are subgraphs that are more frequent than one would expect in,
say, the basic configuration model to be outlined below.

One of the interesting issues in looking at local structures, as triangle forma-
tion, is how they correlate with other properties. This holds information about
the mechanism that drives the network growth. The “friends of friends become
friends” one is a typical example—as we show in the last section about the
mean-field theory this leads to correlations in clustering that can be detected by
computing C(k). For other possibilities, similar analysis reveals that the dynam-
ics of the local neighborhood—as reflected in the average degree of the neighbors,
〈knn〉—should also be exhibited in the clustering of a node of degree k. This in
turn directly implies that e.g. in assortative networks degree-degree correlations
and the clustering are coupled [9].



Clustering in Complex Networks 141

2 Examples of Clustering

A most basic, clear-cut way to look at clustering is to consider the average
clustering coefficient, C, and this is displayed in Table 1 for various examples.
The clustering seen in non-social networks is of about the magnitude one would
expect for a random graph model with parameters (number of nodes, average
degree) similar to real networks. The configuration model [10,11] for instance
produces similar numbers for graphs of such sizes. Notice the relatively high
clustering in directed networks, from which the clustering has been computed
neglecting the asymmetry. Ravasz et al. [12] and Vázquez [13] provide numer-
ous examples in real-world networks for C(k). Such plots imply, possibly, the
presence of power-law dependence of the coefficient on the node degree k. In
the section about mean-field behavior we shall see that there is a rather trivial
mechanism, of the “friends of friends” type, that can create 1/k-behavior [13–
15]. A number of examples is shown in Fig. 1, supporting this observation. Other
kinds of functional dependencies are less obvious. The analysis of growing net-
works allows in principle to understand various effective decays of C(k), but also
highlights the fact that there are large corrections to scaling. In particular, the
structure of the Internet is an intriguing example, with a power-law decay in
between 3/4 and 1, as shown in Fig. 2. Note that the reason for a decay of the

Table 1. Average clustering for various networks. The table contains the type of the
graph, its nature (directed or undirected), the number of vertices N , the average clus-
tering coefficient C, and finally there is a citation to the source of the data. According
to Newman [2].

network type N C Ref(s).
film actors undirected 449 913 0.20 [1,16]
math coauthorship undirected 253 339 0.15 [17,18]
physics coauthorship undirected 52 909 0.45 [19,20]
biology coauthorship undirected 1 520 251 0.088 [19,20]
email messages directed 59 912 0.16 [21]
email address books directed 16 881 0.17 [22]
student relationships undirected 573 0.005 [23]
WWW nd.edu directed 269 504 0.11 [24,25]
Roget’s Thesaurus directed 1 022 0.13 [26]
Internet undirected 10 697 0.035 [27,28]
power grid undirected 4 941 0.10 [1]
software packages directed 1 439 0.070 [29]
software classes directed 1 377 0.033 [30]
electronic circuits undirected 24 097 0.010 [31]
peer-to-peer network undirected 880 0.012 [32,33]
metabolic network undirected 765 0.090 [34]
protein interactions undirected 2 115 0.072 [35]
marine food web directed 135 0.16 [36]
freshwater food web directed 92 0.20 [37]
neural network directed 307 0.18 [38,1]



142 G. Szabó, M. Alava, and J. Kertész

10
0

10
1

10
2

10
3

10
4

k

10
−2

10
−1

10
0

C
(k

)
(a)

1 10 100
k

10
−1

10
0

C
(k

)

(b)

10
0

10
1

10
2

10
3

10
4

k

10
−4

10
−3

10
−2

10
−1

10
0

C
(k

)

(c)

10
0

10
1

10
2

10
3

k

10
−3

10
−2

10
−1

10
0

C
(k

)

(d)

Fig. 1. The scaling of C(k) for four networks. The dashed lines indicate inverse power
laws in all cases. (a) The actor network based on the imdb.com database. Two actors
are connected if they ever played together. (b) The semantic web of English words.
Words are connected if the Merriam-Webster dictionary lists them together. (c) WWW
data collected by Albert et al. [24] (d) The Internet at the Autonomous System level,
where each node represents a domain. The figures are presented by Ravasz et al. [12].

10
0

10
1

10
2

10
3

k

10
−4

10
−3

10
−2

10
−1

10
0

<c>k

IR
AS
AS+
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AS+) and the Internet Router level (IR). The solid line indicates the power law decay
C(k) ∼ k−0.75. After Vázquez et al. [39].
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distribution is clear in many cases. Effectively, hubs connect (in particular in
graphs with a hierarchical structure) subgraphs or cliques to each other. These
are of course not connected with others, so the largest-k nodes have a small
C(k).

Loops up to size 5 are much more frequent in the Internet than in random
scale-free networks [3]. For triangles, the data implies that C(k) for the Au-
tonomous System level Internet indeed scales as k−0.7, regardless of the time
at which the data has been taken [39]. The same data compares also with the
fitness model outlined below.

Thus, vertices of high degree k tend to be connected, on average, to others
of low degree, and vice versa. Newman and collaborators [9,29] argue that only
social networks tend to have a positive so-called Pearson correlation coefficient
r that quantifies this. Small networks can accidentally have large clustering,
though r is negative. The existence of modular structures may have geographic
(the Internet [40]), functional (metabolic [5] or protein interaction networks [41])
bearings, or arise due to social network activities [6,42].

3 Models That Create Clustering

There are several possible recipes for models that result in local structures with
the desired properties. On the level of computer simulations one can separate
two classes of dynamics, depending on whether the graph is growing (nodes are
added) or whether the edge population is allowed to equilibrate. Or, one can set-
up the graph from the very beginning, from an ensemble like in the Erdős-Rényi
graph example [43].

3.1 Static Graphs

In this respect, a perfect example is the Newman and Park model of networks
based on groups [44]. The idea is simple: create local clustering inside groups,
mimicking social networks. One takes N individuals and divides them into M
groups (“community structures” [6]). Like in the Holme-Kim model of growth
individuals have strong, probabilistic triangle formation inside groups. One can
complicate this idea further, by e.g. labeling the groups [45]. This graph can be
presented as a bipartite one, with connections between groups and individuals,
only. The clustering properties are obviously something that one can tune, at
will, by changing the local intra-group connection probability p. The outcome is
that the average clustering coefficient is

C = pCb, (2)

Cb being the clustering coefficient of the simple one-mode projection of the
bipartite graph [46]. Likewise one can determine C(k) ∼ 1/k again in analogy
with the “friends of friends” principle. The factor Cb can be determined exactly
in a number of cases.
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An even simpler way is to modify Erdős-Rényi graphs by tuning the degree
distribution to the wanted one: the configuration model [10,11]. Here [2,21]

C =
1
Nz1

[
z2
z1

]2

=
z1
N

[ 〈k2〉 − 〈k〉
〈k〉2

]2

, (3)

where zi denotes the coordination of the i’th layer (i.e. 1 means neighbors), and
N is the size. This is the Poisson random graph value C = z1/N times an extra
factor. Notice that C ∼ N−1, but for wide degree distributions the actual value
can be significantly larger and thus noticeable. For power-law distributions, this
results in [2]

C ∼ N−β , β =
3α− 7
α− 1

. (4)

For truly SF networks (P (k) ∼ k−α), with an α in the range between two and
three, this leads to interesting behaviors. For small enough α values C even in-
creases with N , while above 7/3 the decay is slower than in random graphs.
Note that this is in slight contrast with the fact that the configuration model is
assumed to have no loop structure. Similar results can be derived for the projec-
tions of bipartite graphs [46]. Recently, Caldarelli et al. [47] and Söderberg [48]
(see also [49]) have proposed different models of inhomogeneous random graphs
that represents a natural generalization of the classical Erdős-Rényi random
graph model [43].

For the film-actor collaborations [1,16], collaboration networks of mathemati-
cians [17,50], company directors [51], and an email network [22], the configuration
model-based argumentation results in an average clustering coefficient of 0.0098,
0.00015, 0.0035, and 0.017, respectively, much smaller than the actual values
(see Table 1). The suggested reason is the presence of community structures or
groups [2,12,6,42], but of course direct “friends of friends get to know each other”
mechanisms would work as well (e.g. [52–56]).

A more complicated idea to create networks, with an influence on clustering,
is to assign “fitnesses” to the vertices and make the linking to be dependent on
the quenched values for any pair of nodes (i, j): fi and fj [57]. This is in fact just
a generalization—for a static network—of the Erdős Rényi graphs (where f ≡ p).
The properties of this kind of networks depend on the probability distribution
ρ(f) of the fitnesses, assuming that links are established simply by a probability
linearly dependent on both fi and fj . A power-law ρ leads simply to a power-
law distribution for the degrees. Even for other distributions, one may get SF-
networks using threshold rules for the fitnesses in the linking process. Power-law
clustering is not created by a ρ(f) that is a power-law, but for an exponential
one: with N = 104 and 〈k〉 = 10, the average clustering coefficient is C � 0.1,
〈knn〉(k) ∼ k−0.85 and C(k) ∼ k−1.6 has been demonstrated [47]. It remains to
be seen how the threshold rule incorporated in this can be justified. The authors
argue that protein networks may provide an example, since in the “two-hybrid”
method the hybridizing of two proteins depends on the interaction time of the
two proteins which if large enough allows transcription.
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One of the important advances in the understanding of network properties
based on the “rules of the game” is the analysis of the hidden-variable models by
Boguña et al., applicable in particular to models with static fitnesses [57]. One
example is given by social networks. One can for instance define distances, by
assuming the presence of some effective metric. Since social networks empirically
exhibit large clustering, the metric should also lead to comparable behavior. This
is naturally coupled to the assortative mixing exhibited by such networks, i.e.,
the function 〈knn〉 is not trivial. These are often in social networks coupled to
the presence of community structures [6,44]. In the social network formation
model of Boguña et al. [58] the connections between individuals are established
as a function of the social distance. Communities arise naturally, and the average
clustering coefficient remains non-zero in the thermodynamic limit. The central
idea is to use (in a d-dimensional space of distances) a connection probability that
is approximately inversely proportional to the social distance to a power α. Social
distance, in this case, is measured in a d-dimensional space of social features
(geographical location, wealth, religion, etc.). α > 1 measures the tendency of
people to connect to similar people. Using the aforementioned hidden-variable
theory [57] one can compute many properties of the model.

One-dimensional simulations with initial random conditions for the individ-
uals clearly exhibit the fact that α is the essential control parameter (Fig. 3).
The asymptotic value is C = 3/4 for α→∞.

Finally, another approach akin to equilibrium statistical mechanics is to as-
sume an energy or a Hamiltonian [59] for the structure. One attempt is to use
an energy for an i↔ j-link [60]

εij =
min{ki, kj}
max{ki, kj} − 1, (5)
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and εij is 0 if i and j are not connected. Equation (5) favors large differences
between the respective degrees, together with the Hamiltonian being H(G) =∑
i<j εij for the configuration G. One may now do random rewiring (which is

easy since one does not need to conserve properties such as the local degree).
In particular, for Metropolis-like rewiring dynamics the outcome depends on the
effective temperature α chosen.

Numerical data implies C ∼ N−σ(α) for N → ∞, with σ ranging from ≈ 1
to ≈ 0.25 for 0 ≤ α ≤ 6, and C(k) ∼ k−β is also obtained for various values
of α. The exponent β reflects the fact that there is hierarchical clustering (like
before, locally highly clustered subnetworks are connected via hubs). β = 0 for
α = 0, but for larger α a power-law C(k) takes over, with β increasing with α
towards β = 1 (Fig. 4).

The rule of an underlying geometry has natural effects on clustering. This
may be behind the fact that the Internet exhibits such geometric properties.
The existing models in which links are added to regular lattices to create SF de-
gree distributions have rather large clustering coefficients. Manna et al. studied
another version of the same theme [61], in which the cost (Euclidean length) is
minimized starting from a N node Barabási-Albert (BA) network [62] on a two-
dimensional plane, with link interchange. This is done by rewiring two disjoint
links so that either ends of the links will be exchanged to point to the pruned ver-
tex of the other pair, preserving the disjointness. A random rewiring version also
exists. The ensuing clustering—note that the degree properties of the original
BA model are maintained—shows interesting features. The average clustering
coefficient does not show any dependence on N , while C(k) becomes a power
law with a logarithmic correction (Fig. 5). The behavior can be characterized
empirically with

C(k) ∼ {k/[ln(k)]1/2}−b, (6)
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different kinds of rewiring strategies, respectively. Provided by Manna et al. [61].

where b ≈ 0.94 and 1.1 for the normal and random rewirings, respectively. The
presence of the logarithmic correction is interesting, and note the similar discus-
sion in Section 4.

3.2 Growing Networks

The easiest complication to the Barabási-Albert model is to allow for both the
addition of new nodes, with preferential attachment, and the addition of new
edges [63]. The edge addition can then be made such as to indirectly favor
clustering over the BA-case. If the formation of new links is such that we require
assortative mixing [9], one would take the nodes to which new links are being
connected with a probability function that uses as the argument |k1−k2|, i.e., the
difference in the degress of the trial nodes. Such assortative networks however
can produce increasing clustering with k, in stark contrast to usual data, which
simply arises from a tendency of hubs to be interconnected. In social networks,
this is often not the case, as for instance in preprint databases.

In more concrete terms, the idea is to combine vertex addition (with proba-
bility p) and link addition (with probability 1− p), incorporating into the latter
a probability that takes into account the degrees of the nodes the link would
connect. For instance, the probability to actually place a link being

P (k1, k2) ∝ 1
|k1 − k2|+ 1

(7)

would result in assortative mixing, and

P (k1, k2) ∝ |k1 − k2| (8)
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in disassortative mixing, in analogy to many non-social networks. The latter
allows to solve the degree distribution, a power law with the exponent γ(p) =
2+ p

2−p . The usual clustering related quantities show again the effect of controlled
triangle-formation. For C(k) a power-law can be established, in analogy to the
behavior of 〈knn〉(k) again. For small enough values of p, β is in the range of
0.7...0.8, while for p > 0.7 the BA tree behavior is approached.

The relevance variables driven model of Caldarelli et al. [64] is another ex-
ample of “hidden variables”, which has the explicit motivation to attain as close
a match to the Internet variables as possible. The model has the basic idea that
a node added at time t with a relevance rt connects only to nodes with higher
relevances rτ > rt, with a preferential attachment (PA) rule applied in that case
with m links. One may proceed to solve the degree distribution using standard
rate equation techniques. More interestingly, perhaps, the 〈knn〉(k) and C(k)
turn out to have properties influenced by the “community” mechanism implied
by the relevances. Both decay with k, and it is found that 〈knn〉(k) � k−0.57,
close to the Internet value [65,66]. The C(k) decays as k−0.72, close again to the
Internet Autonomous System data scaling.

A recent modification of the BA model is such that a color is assigned to
each vertex, to denote an association with a group. The model of Kim et al. [67]
starts as follows: first a BA graph is grown up to a size n. Then the vertices are
split into two groups, by using the nodes with the two largest degrees and, for
the others, the topological distances to these two for classification. Subsequently,
more vertices are added with randomly chosen colors, and with preferential at-
tachment linking only to those with the same color. Once the largest group grows
to the threshold size n, it is split again.

Figure 6 demonstrates a typical 1/k -scaling for C(k); note that 〈knn〉(k) ∼
k−0.5 for the data. The degree distribution is interestingly “narrower” than for
the BA model. Notice that the scalings are dependent on the split-up parameter
n in the model. A cross-over in C(k) from constant to power law can be obtained
by tuning the maximum number of links per new node towards n.
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Another question is the role of an underlying (two-dimensional) geography :
previously we met an example where the geometry was optimized while keeping
the distance properties as an objective. A more general one is how the geometry
and clustering combine if spatial distances are involved in general, e.g., as a
growing network develops [56,69–72]. An easy example is the formation of social
networks, with face-to-face contacts being obviously of importance. One attempt
is to change the generalized PA rule [P (new→ i) ∼ kβi ] to such that a factor �α

is added, where � is the distance between the two nodes, and α is a parameter.
Notice that without any spatial structure, scale-free graphs are obtained only
with β = 1 [73], but the incorporation of α may enlargen the parameter space
such that SF features are obtained in a region of α-β phase space. Simply adding
the spatial correlations to a BA network maintains the power-law characteristics
if α is large enough [70,71].

Simulations in [74] with a one dimensional Euclidian structure imply a com-
plicated phase diagram if the preservation of the SF properties are considered.
Roughly, if α < 0.5, β has to be increased from unity, and meanwhile the degree
decay exponent γ decreases from the BA value of 3. As regards to clustering, the
addition of spatial background is able to change the behavior from the quasi-
trivial BA limit C(N) ∼ N−1. The behavior of the average clustering coefficient
C(N) on the SF phase boundary is interesting: clustering is enhanced when α
decreases, the power-law exponent of C(N) is reduced, and for very large neg-
ative α clustering even seems to increase (obviously, this should be reconciled
with the fact that C ≤ 1).

In real problems one usually cannot expect that the global rule of preferential
attachment governs the growth mechanism. E.g., in biochemical applications, or
autocatalytic reactions some local chemistry or, in biological systems, evolution
determines the adjacency, which, however, may result in a network with similar
properties [34,35,75–85].

Such local dynamics in protein network-related models (see e.g. [86]) typi-
cally contains the idea that a gene is duplicated but not completely, and thus
proteins that the gene produces or controls are not exactly the same [87]. Thus
the protein-protein interaction network evolves as a duplicated gene creates two
vertices with the same interactions (addition of a new node). Now one can pos-
tulate mechanisms that slightly modify the copied interactions [81,88,89]. Note
that this is very reminiscent of the World Wide Web growth, since one often
copies (outgoing) links to new pages from existing ones. Such mechanisms give
easily rise to an effective PA rule, which as usual may imply a power-law degree
distribution with an exponent dependent on the relative rates of the micro-
scopic processes. The clustering in such models has to arise so that the creation
of edges gives also rise to real correlations between the degrees of neighbor-
ing vertices. Node-duplication of course reproduces already existing triangles. A
constant probability for this induces automatically a ∼ 1/k-behavior for C(k),
since the probability for a node to get increased clustering from duplication is
linearly proportional to its degree. This scaling might be changed with any pos-
sible edge removal process. A variant is the duplication-divergence model [89],
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where vertices are first duplicated and the copies made to self-interact with a
finite probability, and then out of each pair of edges coupled to the twin vertices
one is removed with another probability. One particular twist is that the model
has a highly non-trivial degree distribution that depends on the probability to
remove edges, and may be called multi-fractal. Simulations of clustering [89] re-
veal that while the degree distributions are extremely non-trivial and follow only
partly mean-field descriptions, the behavior of C(k) does follow an approximate
power-law with C(k) ∼ k−β , and β ≥ 1. Increased loss of edges makes the devi-
ation from the 1/k-scaling more dramatic. The fast decay of C(k) couples to a
negative correlation between the degree of a vertex and its neighbors, in analogy
to some empirical and modelling results [83,90].

Further model variants, still keeping away from global PA dynamics, have
been devised by Vázquez [13]. The idea is as follows. Typically, it could be en-
visioned that a random walk is performed on a set of connected web pages. If
one now assumes that there is a constant probability, per vertex visited, to be
joined to the first node, this naturally creates an effective PA rule—nodes with
k links have a linear probability, on the average, to be added. If one forgets
about the difference of in- and out-degrees, the number of pairs of nearest neigh-
bors connected follows a rate equation, which, after integration, yields the local
clustering coefficient for nodes with sufficiently large degrees as

C(k) ≈ 2(1 + qe)
k

, (9)

where the random walker with probability qe follows an outgoing link, or else
jumps to a random page. Simulations with a version of the random walk model,
with a vertex addition mechanism similar to the Holme-Kim model [15], repro-
duce this behavior. The other possiblity to consider is to follow all the new edges
emanating from the last chosen one, with a probability qe. This recursive search
dynamics gives rise to a phase diagram in terms of the control parameter.

Local dynamics can also be made to mimic the friends-of-friends character-
istics of social graphs. Davidsen et al. have presented a model [91], in which a
joint friend directly creates a link between two vertices (or individuals), in anal-
ogy with the Holme-Kim modification of the BA model (see also [54]). Vázquez
moreover has presented a model in the language of social dynamics [13]: links are
formed at random between nodes that do not have joint neighbors with a rate
∼ 1/N2 and links between such with a rate ∼ 1/N . The equations of [13] are
in fact, for clustering, an adaptation of the mean-field theory to this particular
model, with the analytical outcome that C(k) ∼ k−1. Simulations of the model
demonstrate that mean-field approximations do not necessarily apply here after
all, and likewise the exponent of C(k) does not scale inversely with k, but decays
slower. This is coupled with the presence of an increase in 〈knn〉(k) with k.
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4 Rate-Equation Approach

4.1 Rate Equations for Growing Models

Growing models are particularly apt to be described by rate equations. When
these kinds of models are considered, we can write down the rate equations for
the clustering in a general form. We thus need to examine the rate of change
averaged over many realizations,

∂ni
∂t

= R(ki, Π)
∑

n∈Ω
R(kn, Π), (10)

where ni is the average number of connected neighbors of the site i, and the local
clustering coefficient Ci = ni/[ki(ki−1)/2]. Here R is the rate at which i gets new
links (or even loses them, if applied to processes with re-attachment or deletion
of links). We allow the rate to depend on both the degrees of the node in question
and a parameter set Π. This can be “annealed” or “quenched”, depending on
whether the parameters describe stochastic rules (as in the example below) or
a fixed property of each node i. E.g., R can simply follow from the preferential
attachment rule. Ω is the set of neighbors of node i and the sum accounts for
the probability that a new node linked to i also links to one of the neighbors of i.
This increases ni and enhances clustering. In order to make (10) more concrete,
we briefly discuss the triad formation model [15] as an example.

The complications in solving a rate equation like (10) arise from the correla-
tions that are embedded between the degree of node i and the properties of its
neighborhood. For the triad formation model, the rules consist of a BA model
extended by a triad formation step. Initially, the network contains m0 vertices
and no edges, and in every time step a new vertex is added with m undirected
edges. Them edges are then one-by-one subsequently linked tom different nodes
in the network. One performs a preferential attachment step for the first edge as
defined in the BA model. With probability p, the second and further edges are
joined to a randomly chosen neighbor of the node selected in the previous PA
step. Alternatively, with probability 1− p, a PA step is performed again.

In the limit when p approaches zero, one recovers the original BA model, and
by setting p to a value between 0 and 1 the average clustering can be adjusted
continuously and grows monotonically with an increasing p. The microscopic
mechanisms that increase ni are illustrated in Fig. 7 and are (I): the new node
connects to node i in a PA step, which is potentially followed by several triad
formation (TF) steps; (II): the new node connects to one of the neighbors of i
in a PA step and then i conversely gets linked to the new node in one of the
subsequent TF steps; (III): the new node connects to node i in a PA step and a
neighbor of i is also selected for connection to the new node in another PA step.
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Fig. 7. Three different options to connect to node i with m ≥ 2. In (I), a PA step
is performed first linking to i and then a TF step creates a link between neighbors of
i. In (II), the same happens, in a different order. (III) shows how two PA steps may
contribute to ni. Bold edges increase ni.

Using the above for R(ki, p), the rate equation for ni reads

∂ni
∂t

= mPA
ki

2mt
mTF +mPA

∑

n∈Ω

kn
2mt

1
kn
mTF +

+ mPA
ki

2mt
(mPA − 1)

∑

n∈Ω

kn
2mt

. (11)

The three terms correspond to the three mechanism of Fig. 7. The solu-
tion [14] requires the calculation of the average degree of the neighbors, and
yields a C(k) function composed of a C(k) ∼ k−1 part for small degrees, and
C(k) ∼ const. for large degrees. It is summarized in Fig. 8.

4.2 AB Model Definition

In the following we demonstrate a few of the implications on a model that is a
simplification of the one proposed by Capocci et al. [92], and is called the AB
model.

The AB model is an extension of the Barabási-Albert model, and it proceeds
by assigning a type (fitness, relevance) to every new node, which does not change
afterwards. It can be of type A with probability p, or type B with probability
1 − p. New nodes can then link to a fixed number of m different nodes in the
system, with the condition that B nodes are allowed to attach to B nodes only.
A nodes are permitted to link to any type of other node. These rules result in
bipartite graphs, as shown in Fig. 9.

4.3 Rate-Equation Approach for the AB Model

In this section we analyze how the rate-equation approach can be applied in
attempting to calculate the clustering coefficient for nodes of the AB model. We
first formulate the time evolution of the node degrees with respect to their type.
The rate equations read
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Fig. 8. Clustering coefficient as a function of the node degree for m = 5 and different
sizes (104 for circles, 25119 for + symbols, 63096 for stars, 158489 for boxes, and 106

for triangles). The triad formation probability is uniformly p = 0.01. The bold line is
the prediction given for the largest system, C(k) ≈ 0.04 k−1 + 9.5 · 10−5. The inset
shows the data collapse of the power-law part of C(k).
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Fig. 9. The AB model as two nodes of different kinds are added.

∂kAi (t)
∂t

= pm
kAi (t)
2mt

(12)

for A nodes, since only new incoming A nodes are able to increase the degree of
a given A node. On the other hand, B nodes satisfy

∂kBi (t)
∂t

= pm
kBi (t)
2mt

+ (1− p)m kBi (t)∑
j∈{B} k

B
j (t)

, (13)
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where the second term accounts for new nodes of type B, and therefore the sum
is to be taken over only existing B nodes in the system.

The solution for A nodes is straightforward from (12), and is given by

kAi (t) = m

(
t

ti

)βA

, βA =
p

2
(14)

in compliance with the initial condition that kAi (ti) = m. This enables us to
estimate for the sum in (13) using

∑

j∈{A}
kAj (t) +

∑

j∈{B}
kBj (t) = 2mt (15)

as

∑

j∈{B}
kBj (t) ≈ 2mt−

∫ t

1
pm

(
t

τ

)βA

dτ ≈
(

2− p

1− βA

)
mt, (16)

where the sum over the degrees of all A nodes has been approximated by the
integral. We furthermore assumed that the probability that a given node is of
type A is uniformly p independently of the time of its introduction, as defined
in the model.

The rate equation (13) for B nodes can now be solved by the same virtue as
(12), yielding

kBi (t) = m

(
t

ti

)βB

(17)

and

βB =
p2 + 2βA − 2

2(p+ 2βA − 2)
=
p+ 2

4
. (18)

Figure 10 shows that simulation result reproduce the exponents obtained
above. The exponents of the degree distributions might be calculated accordingly,
and a joint degree distribution function is given by the p-weighted sum of the
individual distributions.

4.4 Clustering Coefficient

To calculate the clustering coefficient, one needs to consider the neighborhood
the node in question is surrounded by. The coefficient for the given node changes
only when a new node is linked to both to it and to one of its neighbors. In order
to compute the linking probabilities, we need to know the expected values of
the degrees for the node and its neighbors. This is not particularly difficult for
models like for instance the Barabási-Albert one, and here we can take a similar
approach. Observe that the average rate of increase in ni is the probability that
a new node links to both i and one of its neighbors:



Clustering in Complex Networks 155

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

t

k 10
00

A
,B

Fig. 10. Time evolution of degrees of the 1000th node of preset type A (circles) and
B (squares), respectively. Systems of maximum size 5 · 105 and parameters p = 0.5,
m = 3 were chosen. Power-law fits at the upper end of the scale result in exponents
of 0.24 for the A node and 0.63 for the B node. Values other than p = 0.5 also give
consistent results with (14) and (18).

∂ni
∂t

= P (new → i)P (new → Ωi), (19)

where the set Ωi denotes the nodes belonging to the neighborhood of i. The
expressions for both probabilities above depend on the details of the model, and
in our case will be different for the two possible kinds of nodes.

To illustrate these, let us now give approximations for the total degree of
neighboring nodes for both types of nodes. For A nodes, the sum of all degrees
of neighbors that are older than the node itself is

∑

n∈Ωi,tn<ti

kn(t) =
∑

n∈Ωi,tn<ti

[
p
kAn (ti)

2ti
kAn (t)+ (1− p)k

B
n (ti)
2ti

kBn (t)
]
. (20)

The first term in the sum stands for older neighboring A nodes, while the second
term for older neighboring B nodes, since an A node can attach to either types.
Both of the terms are composed of two probabilities indicating that the neighbor
is of type A or B, respectively, that i connected to it when it was introduced,
and a third multiplier to provide for the expected degree of the neighbor.

Likewise, for newer neighbors the sum becomes

∑

n∈Ωi,tn>ti

kn(t) =
∑

n∈Ωi,tn>ti

p
kAi (tn)

2tn
kAn (t), (21)

for only A nodes can get linked to the A node.
Very similarly, the corresponding equations can be written for the sum of the

neighbors’ degrees of a B node. For earlier B neighbors it gives
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∑

n∈Ωi,tn<ti

kn(t) =
∑

n∈Ωi,tn<ti

(1− p)k
B
n (ti)
bti

kBn (t), (22)

where b is related to the normalization factor for the total degrees of B nodes
at any time in the system. b can be inferred from (16) as

b =
1
mt

∑

j∈{B}
kBj (t) ≈ 2− p

1− βA =
4− 4p
2− p . (23)

For newer A and B neighbors the sum is

∑

n∈Ωi,tn>ti

kn(t) =
∑

n∈Ωi,tn>ti

[
p
kBi (tn)

2tn
kAn (t)+

(1− p)k
B
i (tn)
bti

kBn (t)
]
. (24)

For a node i of type A, the rate equation for the number of links between its
neighbors, nAi , is

∂nAi (t)
∂t

= p ·mk
A
i (t)
2mt

· (m− 1)
∑

n∈Ωi

kn(t)
2mt

, (25)

since only a new node of type A can increase it, precisely by linking to it and to
one of its neighbors. The sum over the neighbors

∑
n∈Ωi

kn(t)
2mt can be calculated

by using (20–21).
The same for a B node is

∂nBi (t)
∂t

= p ·mk
B
i (t)
2mt

· (m− 1)
∑

n∈Ωi

kn(t)
2mt

+

(1− p) ·mk
B
i (t)
bmt

· (m− 1)
∑

n∈Ωi,n=B

kn(t)
bmt

. (26)

The only difference here from (25) is that new B nodes have to be incorporated
in the second term of the sum as well.

The clustering coefficient is then calculated as Ci(t) ≈ 2ni(t)/ki(t)2, where
we have to integrate (25) or (26) in order to obtain the total change in ni relative
to ni(ti). ni(ti) is the initial value of the links between neighbors of i acquired
when i is introduced and linked to m other nodes. To calculate this, one would
need to consider any pairs of neighbors that i might get linked to, and also
possibly higher-order neighbors so that for instance a pair of second neighbors
could increase ni(ti) by two even when i uses only three edges to link to nodes,
as illustrated in Fig. 11. This factor is relatively significant, since nodes with
large degrees are very likely to be clustered together, and thus new nodes often
link among these.
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Fig. 11. Higher-order neighbors increase ni(ti) in an accelerated manner.
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Fig. 12. Number of links between nearest neighbors at time t for the i = 100 node,
of type A (circles) and B (squares), respectively, in darker color. The curves in light
color represent the analytical solutions of (25) and (26). In both cases, the simulations
were performed by setting the 100th node to the desired type, and measuring ni(t) for
as long as 106 nodes were added. p = 0.5.

An approximation for ni(t) of both kinds of nodes can then be given by
taking integrations instead of all the sums above, using (14) and (17) for kAn and
kBn , respectively. Substituting the appropriate sums for the degrees of nearest
neighbors into (25) and (26) and integrating both sides yields nAi (t) and nBi (t)
at any given time, up to the constant initial values discussed above. This is
illustrated in Fig. 12, where the neglected initial offset is apparent.

The model growth rules give rise to nontrivial scaling characteristics: it can
be calculated that apart from various power-law terms, ni(t) will also contain
logarithmic terms in t (Fig. 12). For reasons outlined above, it is inherently
difficult to predict the initial value of ni at the introduction time ti(≡ i), just
after the node connected to m other nodes, and thus we can calculate ni in the
thermodynamic limit only, where a constant offset becomes negligible.

The above has the consequence that the local clustering coefficient will also
have logarithmic corrections to it, as shown in Fig. 13. Furthermore, if we con-
sider the clustering coefficient of A nodes, we can see that contrary to most
(but not all) measurement results, it increases with the degree for the given p
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Fig. 13. Clustering coefficient as a function of the node degree, for A (circles) and B
(squares) nodes, respectively. The system size is 5 · 105, m = 3, p = 0.5.
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Fig. 14. Average clustering coefficient in the AB model as a function of the network
size. Circles represent p = 0.3, squares p = 0.7. An approximate power-law exponent
is −0.55 for the former, and −0.7 for the latter. The line is a guide to the eye, with an
exponent of −1 for comparison.

value. In general, the p-weighted average of the two kinds of clustering coefficient
functions needs to be taken to obtain the overall clustering coefficient, and thus
C(k) will be an even more intricate function. A perhaps general feature is the
nonmonotonic behavior of the weighted average, however.

As far as the average clustering coefficient is concerned, it is shown for two p
values in Fig. 14 by means of simulations. In both the p→ 0 and p→ 1 limits the
original BA model is recovered, and so a C(N) ∼ N−1 thermodynamic behavior
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is expected. Apparently in the mixed cases, no true power law is obtained, as
also in the original BA model a (logN)2 correction is in place.

5 Conclusions

The clustering aspect has been crucial in the revolutionary development of mod-
ern theory of complex networks. In the seminal paper by Watts and Strogatz [1]
this property is in the focus. In fact, the Small World model could explain two
out of three generally observable properties of many complex networks: it has a
small average distance and a large clustering, but it fails to reproduce the scale-
free character of the degree distribution. The model by Barabási and Albert [62]
again reflects a pair of the properties, namely it is scale-free, also a small world,
but the clustering is too small as compared to the observations. Meanwhile a
series of simple models have been introduced, which obey all three properties
and which are usually generalizations of the BA model [5,15,55,70,74].

Clustering is a natural way to characterize nontrivial correlations in a net-
work. These are very important from the point of view of applications: Newman
showed that significant high clustering—besides assortativeness—is characteris-
tic for social networks. Bianconi and collaborators [3] showed that clustering can
be considered as a first element in an infinite hierarchy of quantities, namely the
number of h-loops.

It seems that clustering is closely related to the functionality of the network.
If it is defined locally it could give insight into the modularity of certain net-
works [4], at least in such cases where the length scales are separated [93]. An
aspect where this becomes obvious is weighted clustering, where the triangles are
given weights, e.g., depending on the edges and/or vertices they contain. One
may envision in weighted networks [94,95] scenarios in which either “weak” or
“strong” triangles and clustering dominates.

One of the most important applications of complex networks is that of clas-
sification or taxonomy. The task is the following: given a similarity function,
order entities into groups, possibly in a hierarchical manner (which is essentially
the construction of a network). Several techniques can be applied to the prob-
lem [96], many of them leading to tree structures like the minimum spanning
tree, or the average linkage cluster algorithms. The advantage of the latter meth-
ods is that they provide immediate hierarchies. The price to pay, however, for the
enforced tree structure of the network is that important links forming loops are
neglected. In non-hierarchical agglomerative classification, where gradually the
links in descending strength order are inserted, the concept of local clustering
seems to play a guiding role with respect to the information content of similarity
matrices [97].

Considering these aspects, clustering is of crucial importance in analyzing
complex networks. We have shown that besides simulation techniques approx-
imate analytic tools like mean-field type rate equations can be very useful in
treating this quantity. As often for complex networks mean-field methods work
quite efficiently where usually the hand-waving argument of long range interac-
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tions is mentioned in support of this observation. At the moment, however, we
do not have a clear view about the applicability of mean-field methods but we do
see their limitations. It would be desirable to apply a Ginzburg-type criterion,
or, even more ambitiously, to see how renormalization group ideas could be used
for clustering properties.
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32. Adamic LA, Lukose RM, Puniyani AR, Huberman BA (2001) Phys Rev E

64:046135
33. Ripeanu M, Foster I, Iamnitchi A (2002) IEEE Internet Computing 6:50–57
34. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) Nature 407:651–654
35. Jeong H, Mason SP, Barabási A-L, Oltvai ZN (2001) Nature 411:41–42
36. Huxham M, Beaney S, Raffaelli D (1996) Oikos 76:284–300
37. Martinez ND (1991) Ecological Monographs 61:367–392
38. White JG, Southgate E, Thompson JN, Brenner S (1986) Phil Trans R Soc London

314:1–340
39. Vázquez A, Pastor-Satorras R, Vespignani A (2002) preprint cond-mat/0206084
40. Eriksen KA, Simonsen I, Maslov S, Sneppen K (2003) Phys Rev Lett 90:148701
41. Rives AW, Galitski T (2003) Proc Natl Acad Sci USA 100:1128–1133
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89:258702
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Abstract. In this article we give an in depth overview of the recent advances in the
field of equilibrium networks. After outlining this topic, we provide a novel way of
defining equilibrium graph (network) ensembles. We illustrate this concept on the clas-
sical random graph model and then survey a large variety of recently studied network
models. Next, we analyze the structural properties of the graphs in these ensembles
in terms of both local and global characteristics, such as degrees, degree-degree corre-
lations, component sizes, and spectral properties. We conclude with topological phase
transitions and show examples for both continuous and discontinuous transitions.

1 Introduction

A very human way of interpreting our complex world is to try to identify subunits
in it and to map the interactions between these parts. In many systems, it is
possible to define subunits in such a way that the network of their interactions
provides a simple but still informative representation of the system. The field of
discrete mathematics dealing with networks is graph theory.

Research in graph theory was started by Leonhard Euler [1]. In the 1950s
another major step was taken by Erdős and Rényi: they introduced the notion
of classical random graphs [2–4]. By the late 1990s more and more actual maps
of large networks had become available and modeling efforts were directed to-
wards the description of the newly recognized properties of these systems [5–9].
A network is constructed from many similar subunits (vertices) connected by
interactions (edges), similarly to the systems studied in statistical physics. Be-
cause of this analogy, the methods by which some of the central problems of
statistical physics are effectively handled, can be transferred to networks, e.g.,
to graph optimization and topological phase transitions.

In this article we will discuss the construction of network ensembles that fit
into the concept of equilibrium as it is used in statistical physics, with a focus
on structural transitions [10–14]. Note that even though structural transitions in
growing networks are non-equilibrium phenomena [15–17], some of the main fea-
tures of the structures constructed by growth can be reproduced by non-growing
models (see, e.g., . [11,12,18]). Similarly, non-growing graphs are not necessarily
equilibrium systems (see, e.g., [8]). Closely related real-world phenomena and
mathematical models are the configurational transitions of branched polymers
[19], structural transitions of business networks during changes of the “business”
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tures, Lect. Notes Phys. 650, 163–187 (2004)
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climate [20,21], the transitions of collaboration networks [22], networks defined
by the potential energy landscapes of small clusters of atoms [23], and potentials
on tree graphs as introduced by Tusnády [24].

In the present review we intend to go beyond those that have been published
previously [8,12,25], both concerning the scope and the depth of the analysis.

We will focus on the structure of networks, represented by graphs, and will
not consider any dynamics on them. Thus, several widely studied models are
beyond the scope of the present review: models using, e.g., spins on the vertices
[12,26–31], disease spreading [32–34] agent-based models on networks [35], or
weighted edges and traffic on a network [36–39].

Definition: Natural networks mostly arise from non-equilibrium processes,
thus, the notion of equilibrium in the case of networks is essentially an abstrac-
tion (similarly to any system assumed to be in perfect equilibrium). We define
equilibrium network ensembles as stationary ensembles of graphs generated by
restructuring processes obeying detailed balance and ergodicity. During such a
restructuring process, edges of the graph are removed and/or inserted.

This definition raises a few issues to be discussed. First of all, the character-
istic timescale of rewiring one particular link varies from system to system. For
example, the network of biochemical pathways [40] available to a cell can undergo
structural changes within years to millions of years, in contrast to business inter-
actions [20,22], which are restructured over time scales of days to years, while the
characteristic times of technological networks may be even shorter. With a finite
number of measurements during the available time window it is often difficult to
decide whether a graph that has not been observed has a low probability or it
is not allowed at all. Hence, the set of allowed graphs is often unclear. A simple
way to by-pass this problem is to enable all graphs and tune further parameters
of the model to reproduce the statistics of the observed typical ones.

Once the set of allowed graphs has been fixed, the next step in the statistical
physics treatment of a network ensemble is to fix some of the thermodynamic
variables, e.g., for the canonical ensemble one should fix the temperature and
all extensive variables except for the entropy3. At this point, an energy function
would be useful. Unfortunately, unlike in many physical systems, the energy of
a graph cannot be derived from first principles. A possible approach for deriving
an energy function is reverse engineering: one tries to reproduce the observed
properties of real networks with a suitable choice of the energy in the model.
Another possibility can be to explore the effects of a wide range of energy func-
tions on the structures of networks. Alternatively, to suppress deviations from
a prescribed target property, one can also introduce a cost function (energy).
Having defined the energy, one can proceed towards a detailed analysis of the
equilibrium system using the standard methods of statistical physics.

Often a complete analogy with statistical physics is unnecessary, and short-
cuts can be made to simplify the above procedure. It is very common to define
graph ensembles by assigning a statistical weight to each allowed graph, or to

3 In the mathematics literature, the entropy of graphs has been analyzed in detail
[41–43].
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supply a set of master equations describing the dynamics of the system, and
to find the stable fixed point of these equations. Of course, skipping, e.g., the
definition of the energy will leave the temperature of the system undefined.

This article is organized as follows. In Sect. 2 we introduce the most impor-
tant notions. Section 3 will concentrate on currently used graph models and the
construction of equilibrium graph ensembles. Section 4 will discuss some of the
specific properties of these sets of graphs. In Sect. 5 examples will be given for
topological phase transitions of graphs and Sect. 6 contains a short summary.

2 Preliminaries

Except where stated otherwise, we will consider undirected simple graphs, i.e.,
non-degenerate graphs where any two vertices are connected by zero or one undi-
rected edge, and no vertex is allowed to be connected to itself4. The number of
edges connected to the ith vertex is called the degree, ki, of that vertex. Two
vertices are called neighbors, if they are connected by an edge. The degree se-
quence of a graph is the ordered list of its degrees, and the degree distribution
gives the probability, pk, for a randomly selected vertex to have degree k. The
degree-degree correlation function, p(k, k′), gives the probability that one ran-
domly selected end point of a randomly chosen edge will have the degree k and
the other end point the degree k′.

The clustering coefficient of the ith vertex is the ratio between the number
of edges, ni, connecting its ki neighbors and the number of all possible edges
between these neighbors:

Ci =
ni

ki(ki − 1)/2
. (1)

The clustering coefficient of a graph is Ci averaged over all vertices. The shortest
distance, di,j , is defined as the smallest number of edges that lead from vertex
i to j. Finally, a set of vertices connected to each other by edges and isolated
from the rest of the graph is called a component of the graph.

The two basic constituents of a simple graph are its vertices and edges, there-
fore it is essential whether a vertex (or edge) is distinguishable from the others.
In this article, we will consider labeled graphs, i.e., in which both vertices and
edges are distinguishable. A graph with distinguishable vertices can be repre-
sented by its adjacency matrix, A. The element Aij denotes the number of edges
between vertices i and j if i �= j, and twice the number of edges if i = j (unit
loops). For simple graphs, this matrix is symmetric, its diagonal entries are 0,
and the off-diagonal entries are 0 or 1. Note, that the adjacency matrix is insen-
sitive to whether the edges of the graph are distinguishable: swapping any two
edges will result in the same A.
4 In a degenerate (or pseudo) graph multiple connections between two vertices and

edges connecting a vertex to itself are allowed. Some additional extensions are to
assign, e.g., weights and/or fitnesses to the edges and vertices.



166 I. Farkas et al.

Also, it is possible to define equivalence classes of labeled graphs using graph
isomorphism: two labeled graphs are equivalent, if there exists a permutation of
the vertices of the first graph transforming it into the second one. As a conse-
quence, each equivalence class of labeled graphs can be represented by a single
unlabeled graph (in which neither the edges nor the vertices are distinguishable).
These equivalence classes will be referred to as topologies, i.e., two graphs are
assumed to have the same topology, if they belong to the same equivalence class.
This definition is the graph theoretical equivalent of the definition of topology
for geometrical objects, where two objects have the same topology, if they can be
transformed into each other through deformations without tearing and stitching.

The focus of this article is on graph restructuring processes. Denoting the
transition rates between graphs a and b by ra→b, the time evolution of the
probability of the graphs in the ensemble can be written as a set of master
equations:

∂Pa
∂t

=
∑

b

(Pbrb→a − Para→b) , (2)

where Pa is the probability of graph a.
If the dynamics defined in a system has a series of non-zero transition rates

between any two graphs (ergodicity), and there exists a stationary distribution,
P stat
a fulfilling the conditions of detailed balance,

P stat
a ra→b = P stat

b rb→a , (3)

then the system will always converge to this stationary distribution, which can
thus be called equilibrium distribution.

In the reverse situation, when the equilibrium distribution is given, one can
always create a dynamics that leads to this distribution. Such a dynamics must
fulfill the conditions of detailed balance and ergodicity. Since the detailed bal-
ance condition (3) fixes only the ratio of the rates of the forward and backward
transitions between each pair of graphs (a and b), the most general form of the
transition rates can be written as

ra→b = νabPb , (4)

where all νab = νba values are arbitrary factors (assuming that they do not
violate ergodicity).

3 Graph Ensembles

Similarly to Dorogovtsev et. al [8,12] and Burda et. al [44], we will discuss graph
ensembles in this section. According to statistical physics, for a rigorous analysis
one needs to define the microcanonical, canonical, and grand canonical ensem-
bles. However, even if some of the necessary variables, (e.g., the energy) are not
defined, it is still possible to define similar graph ensembles.
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In equilibrium network ensembles, the edges (links) represent particles and
one graph corresponds to one state of the system. In this article we will keep
the number of vertices constant, which is analogous to the constant volume
constraint.

3.1 Ensembles with Energy

Energy is a key concept in optimization problems. Even if it is not possible to
derive an energy for graphs from first principles, one can find analogies with
well-established systems, and also phenomenological and heuristic arguments
can lead to such energy functions [10–14], as described in the Introduction.

Microcanonical Ensemble

In statistical physics, the microcanonical ensemble is defined by assigning iden-
tical weights to each state of a system with a given energy, E, and a given
number of particles; all other states have zero weight. Thus, the definition of a
microcanonical ensemble is straightforward: assign the same weight,

P MC = n−1 , (5)

to each of the n graphs that has M edges and energy E, and zero weight to all
other graphs.

Canonical Ensemble

The canonical ensemble is composed of graphs with a fixed number of edges,
and each graph a has a weight

P C
a =

e−Ea/T

Z C , (6)

where T is the temperature, Ea is the energy of this graph, and

Z C =
∑

b

e−Eb/T (7)

denotes the partition function. Network ensembles with a constant edge number
and a cost function to minimize the deviations from a prescribed feature (e.g.,
a fixed total number of triangles), belong to this category.

Grand Canonical Ensemble

The grand canonical ensemble is characterized by a fixed temperature (T ) and
a fixed chemical potential (µ). The energy and the number of edges (particles)
can vary in the system, and the probability of graph a is
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P GC
a =

e−(Ea−µMa)/T

Z GC , (8)

where Ea and Ma denote the energy and edge number of graph a respectively,
and

Z GC =
∑

b

e−(Eb−µMb)/T (9)

is the partition function.

3.2 Ensembles Without Energy

Microcanonical Ensemble

Numerous network models are defined through a static set of allowed graphs, and
no restructuring processes are involved. Even if no energies and no probabilities
are provided for these graphs, the microcanonical ensemble can still be defined
by assigning equal weight to each allowed graph [8,45]. This is equivalent to
assigning the same energy to each allowed graph (and a different energy to all
the others).

Canonical Ensemble

If a graph model provides probabilities, {Pa}, for a set of graphs with an identical
number of edges, then it can be considered as a canonical ensemble. One can
easily construct an energy function from the probabilities using (6):

Ea = −T logPa + logZ . (10)

That is, the energy can be defined up to a factor, T , and an additive term, logZ.

The Grand Canonical Ensemble

This ensemble is very similar to the canonical ensemble except that even the
number of edges is allowed to vary. In this case an energy function can be con-
structed from (8):

Ea = −T logPa + µMa + logZ , (11)

and a new, arbitrarily chosen parameter, µ, appears.

3.3 Basic Examples

The Classical Random Graph

We will discuss this classical example to illustrate the concept of equilibrium
network ensembles. The classical random graph model is based on a fixed number
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(N) of vertices. The model has two variants. The first one [2] is the G(N,M)
model: M edges are placed randomly and independently between the vertices of
the graph. The second variant [3] is the G(N, p) model: each pair of vertices in
the graph is connected via an edge with a fixed probability, p. In both variants
the degree distribution converges to a Poisson distribution in the N →∞ limit:

pk → 〈k〉ke−〈k〉

k!
, (12)

where 〈k〉 = 2M/N in G(N,M) and 〈k〉 = pN in G(N, p). Viewing the edges as
particles, the constant edge number variant of the classical random graph model
corresponds to the microcanonical ensemble, since each particular configuration
is generated with the same probability. In the constant edge probability variant,
only the expectation value of the number of “particles” is constant, and can be
described by the grand canonical ensemble.

At this point one should also mention the notion of the random graph process
[2,4], a possible method for generating a classical random graph. One starts with
N vertices, and adds edges sequentially to the graph at independent random lo-
cations. In the beginning, there will be many small components in the graph, but
after a certain number of inserted edges – given by the critical edge probability,
pc – a giant component5 will appear. This transition is analogous to percolation
phase transitions. The fraction of nodes belonging to the largest component in
the N →∞ limit is [4]

G(〈k〉) = 1− 1
〈k〉

∞∑

n=1

nn−1

n!

(
〈k〉e−〈k〉

)n
. (13)

This analytical result and actual numerical data [46] showing the appearance of
the giant component are compared in Fig. 1.

The Small-World Graph

Another well-known example for a graph ensemble is the small-world model
introduced by Watts and Strogatz [5]. The construction of a small-world graph
starts from a one-dimensional periodic array of N vertices. Each vertex is first
connected to its k nearest neighbors, where k is an even positive number. Then,
each edge is moved with a fixed probability, r, to a randomly selected new
location. This construction leads to a canonical ensemble: the number of edges
is constant and the probabilities of the individual graphs in the ensemble are
different, because the number of rewired edges can vary.

Ensembles with a Fixed Degree Distribution

Many real-world graphs have a degree distribution that decays slowly, as a power
law, as measured and described by Barabási, Albert and Jeong [6,48]. These
5 Note that the growth rate of this component is sublinear: it grows as O(N2/3) [47].
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Fig. 1. Size of the largest component in a classical random graph as a function of the
average degree, α = 〈k〉, of a vertex. Note that for N > 106 the Monte Carlo data is
almost indistinguishable from the theoretical result in (13). Error bars are not shown,
because in all cases the error is smaller than the width of the lines. The inset shows
the transition in the vicinity of the percolation threshold, αc = 1. Figure from [46].

graphs are often referred to as scale-free. On the other hand, the classical random
graph’s degree distribution has a quickly decaying (1/k!) tail (see (12)). The
degree distributions of graphs have become central to numerous analyses and
various graph ensembles with fixed degree distributions have been developed [8,
12,44].

Given a network with the degree distribution pk, there exist several rewiring
algorithms that retain the degrees of all nodes at each rewiring step and generate
an equilibrium ensemble of graphs. Two examples are the link randomization
[49] and the vertex randomization [50] methods. In both methods, two edges
are selected first, and then one of the end points of each edge is picked and
swapped, ensuring that none of the degrees are changed. The two methods are
explained in detail in Fig. 2. The resulting canonical ensembles will have the
degree distribution pk in common, but can have different equilibrium weights
for the individual graphs. As pointed out by Xulvi-Brunet et. al [50], upon link
randomization the degree-degree correlations are removed from a network, but
vertex randomization builds up positive degree-degree correlations.
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Fig. 2. Generating graph ensembles by randomization methods that leave the degree
sequence of a graph unchanged. (a) Link randomization. First, one selects two edges of
the graph randomly. These are indicated by heavier lines: edges 1 − 2 and 3 − 4. Then,
one end point of each edge is selected randomly – the end points at vertices 1 and 3,
respectively – and the selected end points of these two edges are swapped. (b) Vertex
randomization. One starts with selecting two vertices at random (vertices 5 and 6 in
the example). Next, one of the edges at each vertex is picked randomly and their end
points at the selected vertices are swapped.

3.4 Examples for Graph Energies

Energies Based on Vertex Degrees

The most obvious units in a graph are the vertices themselves. Therefore, it is
plausible to assign the energy to each vertex separately:

E =
N∑

i=1

f(ki) . (14)

Note that if the number of edges is constant, then the linear part of f is irrelevant
(since its contribution is proportional to the number of edges in the graph), and
simply renormalizes the chemical potential in case of the grand canonical ensem-
ble. In the infinite temperature limit any f will produce the classical random
graph ensemble. If f decreases faster than linear, e.g., quadratically,

E = −
N∑

i=1

k2
i , (15)
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then at low temperatures the typical graphs will have an uneven distribution of
degrees among the vertices: a small number of vertices with high degrees and a
large number of vertices with low degrees. In a model of Berg et. al [10], to avoid
the occurrence of isolated vertices and vertices with large degrees, the following
energy was proposed:

E =
N∑

i=1

[
− k

2
i

2
+ ηk3

i

]
, (16)

and graphs containing vertices of zero degree were not allowed.

Energies Based on Degrees of Neighboring Vertices

Energies can also be assigned to edges,

E =
∑

(i,j)

g(ki, kj) , (17)

where the summation goes over pairs of neighboring vertices (i.e., over the edges).
Energy functions of this type inherently lead to correlations between vertices, as
demonstrated by Berg and Lässig [10] using

g(ki, kj) = ζ δki,1δkj ,1 , (18)

see Fig. 3. Another example for this type of energy is

g(ki, kj) =
min(ki, kj)
max(ki, kj)

− 1 , (19)

a) b)

Fig. 3. Optimized networks generated by Berg and Lässig [10] using (a) energies with
local correlations, see (17), and (b) energies based on global properties, see (23). In
both cases, the temperature, T , was low. Notice that in both graphs disassortativity is
present (see Sect. 4.1): vertices with high degrees (hubs, indicated by filled circles) are
preferentially connected to vertices with low degrees (empty circles). Figure from [10].
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Fig. 4. (a)-(d) Snapshots of the simulation used by Baiesi and Manna [11] to generate
an ensemble of scale-free equilibrium networks from a Hamiltonian dynamics, and (e)-
(f) the Monte-Carlo rewiring method used during the simulation. The initial network
is constructed from N links and N vertices: the vertices are connected as a ring. Later,
M−N (M > N) further edges are added to the network and the Monte-Carlo dynamics
with the energy of (19) is used to decide whether a randomly selected edge, connecting
vertices i and j1, should be rewired to connect the previously unconnected pair of
vertices, i and j2. Blue (dark) edges meet at the vertex with the highest degree. Figure
from [11].

which favors different degrees at the end points of an edge [11] (see Fig. 4 and
Sect. 4.1).

To account for correlations over longer distances, a logical next step would
be to add terms containing second neighbor interactions, e.g.,

E = −1
6

TrA3 , (20)

which counts the number of triangles in the graph with a negative sign. If the
number of edges can be written as M = n(n − 1)/2 with an integer n (n <
N), then at low temperatures this energy leads to a complete (fully connected)
subgraph on n vertices, leaving the rest of the vertices (N − n) isolated.

Energies Based on Global Properties

The most apparent global properties of a network are the sizes6 of its compo-
nents, and especially, the size of the largest component, smax. A simple form of
an energy containing component sizes is [13]

E =
n∑

i=1

f(si) , (21)

where n is the number of components in the graph and si is the size of the ith
component.

The simplest form of the energy is proportional to the size of the largest
component

E = −smax . (22)
6 Component sizes are usually defined as the number of vertices in a component,

however, in this article, because of the edge–particle analogy, si is the number of
edges in the ith component.
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In the ensemble defined by this energy as the temperature is lowered a phase
transition occurs which is analogous to the density dependent transition of the
classical random graph (see Sect. 3.3). This linear energy function was found
to give a continuous transition [14], and the quadratic, E = −s2max or E =
−∑N

i=1 s
2
i energies result in discontinuous transitions.

A possible goal of optimization can be to decrease the graph’s diameter. This
can be realized with, e.g., the energy [10]

E =
∑

i,j

di,j , (23)

where the summation goes over all pairs of vertices. See also Fig. 3 for a typical
network generated with this energy function.

3.5 Mapping the Graph onto a Lattice Gas

A simple, natural mapping of a graph with N vertices onto a lattice gas with
N(N − 1)/2 lattice sites7 is shown in Fig. 5. One particle of this lattice gas
corresponds to one edge of the original graph, and can be at any of the N(N −
1)/2 lattice sites. Two lattice sites are neighbors, if the corresponding two edge
locations (not necessarily occupied by edges) of the original graph have one
end point in common. Note that this lattice strongly differs from the lattices
generally used for lattice gases. Taking an arbitrary edge of the graph, there are
2(N − 2) other possible edges sharing an end point with this edge: in the lattice
gas, therefore, each site has 2(N−2) first neighbors. All the other N(N−1)/2−
2(N − 2)− 1 sites are second neighbors.

The quadratic single-vertex energy is analogous to the usual definition of the
energy for a lattice gas with nearest neighbor attraction,

E = −
∑

(α,β)

nαnβ = −
N∑

i=1

ki(ki − 1)
2

, (24)

2

3 4

1

(2,4)
(1,3)

(one edge of the graph)
particle of lattice gas

(possible edge of the graph)
empty lattice site

Fig. 5. Mapping a graph onto a lattice gas. One edge of the graph corresponds to
one particle. There are N(N − 1)/2 possible locations for an edge in a graph: these
locations correspond to the sites of the lattice.

7 This lattice is called the edge-dual graph of the complete (fully connected) graph of
N vertices [4]. One lattice site corresponds to an edge in the complete graph.
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a standard choice to describe the nucleation of vapors. Here nα is the occupation
number of lattice site α, which is 0 or 1, depending on whether the corresponding
edge exists in the original graph. The summation in the first sum goes over all
pairs of neighboring particles in the lattice gas, which corresponds to all pairs
of edges sharing an end point in the original graph.

This analogy can be extended to an Ising model with a Kawasaki-type dy-
namics, where spins have sα = 2nα − 1 = ±1 values and from (24) the energy
of the system is

E = −
∑

(α,β)

sα + 1
2

sβ + 1
2

, (25)

which can be written as

E = −1
4

∑

(α,β)

sαsβ − 1
2

N(N−1)/2∑

α=1

sα − N(N − 1)(N − 2)
8

. (26)

Mapping the equilibrium graph ensemble with the −∑
i k

2
i energy onto a lat-

tice gas shows that the only difference between this equilibrium graph ensemble
and a lattice gas with the nearest neighbor attraction E = −∑

(α,β) nαnβ on,
e.g., a cubic lattice is the underlying lattice.

3.6 Ensembles of Degenerate Graphs

Degenerate graphs occur in almost all kinds of real-world networks, e.g., in food
webs (cannibalism), biochemical interaction networks (autocatalytic or multi-
ple reactions), technological networks (multiple connections between subunits),
collaboration networks (repeated co-authorships), and also in field theoretic ex-
pansions of particle interactions in the form of Feynman graphs [51].

Ensembles of degenerate graphs [8,12,44] can be introduced similarly to the
case of simple graphs. The microcanonical ensemble on the set of all labeled
degenerate graphs can be defined by assigning the same weight to each graph
with N vertices and M edges. The number of these elements can be given as
follows. There are N(N + 1)/2 possible locations for an edge in a degenerate
graph: one can pick two different vertices to be connected by an edge in N(N −
1)/2 different ways, and the number of locations for self-connections isN . Each of
theM (distinguishable) edges can be placed into any of these possibleN(N+1)/2
locations yielding

P MC =
(
N(N + 1)

2

)−M
(27)

for the microcanonical probability distribution.
It is straightforward to define a microcanonical ensemble on a subset of la-

beled degenerate graphs. Since the degree distribution is a characteristic property
of most real-world graphs, it can be used to select a subset: labeled degenerate
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graphs with N vertices and a fixed degree distribution, pk, meaning that for each
value of k there are exactly N(k) = Npk vertices in the graph with that degree.
A given degree distribution is realized by many adjacency matrices, and each
adjacency matrix is further realized by many labeled degenerate graphs (because
the edges are distinguishable).

Since each graph has the same weight in the microcanonical ensemble, the
probability of a given adjacency matrix, A, is proportional to the number of
different graphs, N (A), that realize this particular adjacency matrix8:

P MC(A) ∝ N (A) = M !
N∏

i=1

1
(Aii/2)!

N∏

j<k=1

1
Ajk!

. (28)

Dorogovtsev et. al [12] have constructed canonical ensembles of degenerate
graphs by equilibrium processes that keep the degree distribution and the num-
ber of edges fixed. At each step of such a process one end of a randomly chosen
edge is moved to a new vertex, i, selected with a weight w(ki). Similarly, the
removal of edges (with a rate λN) together with the insertion of new edges be-
tween vertices i and j (with a rate proportional to w(ki)w(kj)) lead to grand
canonical ensembles.

4 Main Features of Equilibrium Graphs:
Local and Global Properties

In this section, the characteristic features of equilibrium graph ensembles will be
discussed. We will start with local properties and will proceed towards properties
taking into account larger groups of vertices.

4.1 Local Correlations

Most networks obtained from experimental data contain significant correlations.
Therefore, it is a natural requirement that the models describing them should
also contain correlated quantities. The frequent occurrence of connections be-
tween vertices of similar properties such as, e.g., similar degrees, has been termed
assortativity, and the higher probability of connections between vertices with
different degrees was termed disassortativity. In social and biological networks,
both assortativity and disassortativity have been observed [49,52].

One possible way of constructing a random graph with a given degree-degree
correlation, p(k, k′), is the following [53]. First, the degree distribution, pk, of
such a graph has to be determined from
8 The M edges of the graph can be permuted in M ! ways. There are Ajk! equivalent

permutations of the edges between vertices j and k, but they all represent the very
same graph. Similarly, there are (Aii/2)! such equivalent permutations of the unit
loops at vertex i.
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∑

k′
p(k, k′) =

kpk
〈k〉 , (29)

where 〈k〉 =
∑
k kpk is a condition for self-consistence. Next, one needs to assign

a random number, qi, to each vertex i from the degree distribution, pk. Finally,
one should go through each pair of vertices, i and j, in the graph and put a link
between them with probability

〈k〉
N

p(qi, qj)
pqi
pqj

. (30)

A short technical comment here is that not all p(k, k′) functions can ensure that
the degree-degree correlation of the networks constructed with this algorithm
converges to p(k, k′) in the N →∞ limit. The necessary condition is that p(k, k′)
should decay slower than exp(−√k −√k′) [54].

An alternative approach could be to generate a canonical ensemble with a
cost function (energy) to suppress deviations from the prescribed p(k, k′) (see
Sect. 3.1).

4.2 Global Characteristics

Component Sizes

One of the often studied global properties of networks has been the size of the
largest component. Whenever the number of vertices in this component, smax, is
in the order of the total number of vertices, it is called the “giant component”.
In the classical random graph, the giant component appears at the critical edge
density, 〈k〉 = 1. (see [4] and Sect. 3.1). Below this density the largest component
contains O(logN) vertices and above this density it will start to grow linearly.

In a random graph with a fixed degree distribution, pk, the condition for the
giant component to exist is [55,56]

N∑

k=3

k(k − 2)pk > p1 . (31)

At the transition point, the component size distribution of a random graph with
any fixed degree distribution is known to decay as a power law with the exponent
−3/2 [55]. Near the transition, the component size distribution follows a power
law with an exponential cutoff. This is in analogy with percolation phenomena,
where the component sizes also have a power law distribution at the critical
point. An analytic treatment of connected components in random graphs with
fixed degree sequences is available in [57].

Spectral Properties

Work related to the spectral properties of random structures was launched by
Wigner’s semicircle law [58]. His result enabled the modeling of complex quantum
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mechanical systems lying far beyond the reach of exact methods and later it was
found to have numerous applications in statistical and solid state physics as well
[59,60]. As one particular extension of Wigner’s work, Füredi and Komlós [61]
proved that the spectral density of a classical random graph also converges to a
semicircle. It is important to note that in the classical random graph the number
of edges is pN2/2 with p=const., i.e., it grows quadratically with the number of
vertices. The general form of the semicircle law valid for the classical random
graph [62] states that the spectral density of A/

√
pN , apart from the largest

eigenvalue, will converge to

ρ(λ) =

{
(2π)−1

√
4− λ2, if |λ| < 2;

0, otherwise.
(32)

The largest eigenvalue is detached from the rest of the spectrum, and scales as
pN = 〈k〉, while the second largest one is about 2

√
pN = 2

√〈k〉 [63,64]. Note
that reducing the density of edges may destroy the semicircular distribution. In
the case of a sparse9 classical random graph (i.e., with a fixed average degree)
ρ(λ) converges to a distribution rich in singularities [65,66].

The next class of networks to be analyzed is graph ensembles with a fixed
power law degree distribution. For both real-world networks and graph models
having a power law degree distribution, the overall shape of the spectral density
differs from the semicircle and the largest eigenvalues follow a power law distri-
bution [65,71,72] (see Fig. 6). Chung et. al [73] have found that a fixed power
law degree distribution with the exponent γ can be analytically connected to a
power law tail of the spectral density with the exponent α:

α = 2γ − 1, if γ > 2.5 . (33)

The findings of related numerical and analytical studies [65,68,70] are in agree-
ment with this result. Evidently, the large eigenvalues are caused by the large
degrees in the graph. More precisely, it can be shown that the largest eigenvalues
can be approximated by the square roots of the largest degrees [69]. We men-
tion here that the spectral properties of a graph are closely related to random
walks on the graph and to the electrical resistance of the graph as a network of
resistors. For a concise review we refer the reader to [74].

5 Topological Phase Transitions
in Equilibrium Network Ensembles

As already mentioned, a widely studied phase transition in an equilibrium net-
work ensemble is the occurrence of the giant component in the classical random
9 Sparse graphs are a common version of graphs expressing the fact that there is a

cost associated to each connection, therefore, the average degree is limited even when
N → ∞.
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Fig. 6. Average spectral densities of scale-free graphs. (The average degree is 〈k〉 = 10.)
Main panel: Graphs with N = 100 (—), N = 1000 (– –), and N = 7000 (- - -) vertices
and a degree distribution decaying as pk ∝ k−γ (γ = 3). A continuous line shows the
semi-circular distribution for comparison. The central part of the scale-free graph’s
spectral density is spiked in contrast to the flat top of the semi-circle. Also, the scale-
free graph’s spectrum decays as a power law, while the semicircular distribution decays
exponentially at its edges [67]. Inset: The upper and lower tails of ρ(λ) (open and full
triangles) for scale-free graphs with N = 40, 000 vertices. Note that both axes are
logarithmic and ρ(λ) has a power law tail with the same decay rate at both ends of the
spectrum. The line with the slope −5 (i.e., the exponent γ = 5) in this figure is a guide
to the eye, and at the same time a numerical prediction also that was later confirmed
by analytic results [68–70]. Figure from [65].

graph model as a function of the density of edges. For 〈k〉 < 1, there is a similar
transition in the ensemble with the E = −smax energy as a function of the tem-
perature (see later). An appropriate order parameter for such transitions is the
normalized size of the largest component, Φs = smax/M . In transitions where a
condensation of edges onto one vertex (or a small number of vertices) occurs,
the normalized largest degree, Φk = kmax/M , is the most appropriate order pa-
rameter. In general, such transitions where some global statistical property of
the topology changes (measured by an order parameter), will be referred to as
topological phase transitions.
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Ensembles with Single-Vertex Energies

For several decreasing single-vertex energies (e.g., E = −∑
i k

2
i ), a dispersed-

connected phase transition can be observed as the temperature is changed. In
the T → ∞ limit the dynamics converges to a completely random rewiring
process (independent of the energy function chosen), and the classical random
graph ensemble is recovered. At lower temperatures, since the decreasing nature
of the energy function rewards high degrees, new phases appear with vertices of
macroscopic degrees.

Analytic calculations for the E = −∑
i k

2
i energy with 〈k〉 < 1 show that

between the classical random graph phase (at high temperatures) and a phase
with a star (at low temperatures) there exists a finite intermediate temperature
range where both phases are stable or metastable. This predicted discontinuous
transition [13], has been confirmed by Monte-Carlo simulations (see Fig. 7). In
the graph ensemble defined by the E = −∑

i ki log(ki) energy, two phase tran-
sitions can be observed. Both analytical and numerical results [14] support that
when the temperature is lowered, the classical random graph first collapses onto
a small number of stars accompanied by a jump in the order parameter, Φk (see
Fig. 8a). In fact, in the N → ∞ limit this is a second order transition with an
infinitely large critical exponent at T = Tc = 1. Further lowering the tempera-
ture will lead to another transition: a compactification where all edges collapse
onto the minimum possible number of vertices (see Fig. 8b). This transition is
discontinuous with a hysteresis.

Note that for both single-vertex energy functions discussed here the total
energy of the system in the different topological phases scales differently with
N , which is connected to the singular changes in the average degree (see caption
of Fig. 7).

Transient Ensembles vs. Growing Networks

Non-equilibrium processes, such as, growth, can produce a high variety of net-
work ensembles. Some of these ensembles can also be constructed with the help
of an equilibrium dynamics as a transient ensemble, i.e., as an intermediary and
temporary ensemble between an initial set of graphs and the final, equilibrium
ensemble. In the case of the E = −∑

i ki log(ki) energy, during the process of
relaxation from the classical random graph phase to the star-like phase near
the critical temperature, Tc = 1 (see Fig. 8b for two typical graphs illustrating
these two phases), the degree distribution of the graphs in the transient ensem-
ble decays continuously, as a power law (see Fig. 8c). The qualitative description
of this phenomenon is the following. During the transition there is a “pool” of
edges attached to vertices of small degrees, and a small number of vertices with
higher degrees serve as centers of condensation. The change of energy associ-
ated with moving edges within the “pool” is negligible, whereas the nucleation
centers are accumulating edges at a rate proportional to their degrees10. This
10 If an edge from the “pool” is moved to a vertex with a large degree (k), then the

energy of the system changes by approximately ∆E = ∂E/∂k = − log k − 1. In
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Fig. 7. Topological phase transition in the graph ensemble defined by the E =
−∑i k2

i /2 graph energy. (a) The order parameter Φ = Φk = kmax/M as a function of
the temperature and the system size (〈k〉 = 0.5). The simulations were started either
from a star (corresponding to T = 0, solid line) or a classical random graph (correspond-
ing to T = ∞, dashed line). Each data point represents a single run, and averaging was
carried out between the simulation times of t = 100N and 200N Monte-Carlo steps.
The thick solid line shows the analytically calculated spinodal T1 = M/ log(N). This
panel is from [14]. (b) Two typical graphs from the two phases of the graph ensemble.
At low temperatures, edges are condensed onto one vertex (Φ = 1), and the total en-
ergy of the system is non-extensive: it scales as N2. At high temperatures, one has a
dispersed classical random graph with Φ ≈ 0, and the total energy of the system scales
as N .

mechanism, produced by an equilibrium dynamics, is analogous to the preferen-
tial attachment rule of growing (non-equilibrium) models of scale-free networks
[6,48], which also lead to power law degree distributions.

the equilibrium dynamics the rate of this step will be e−∆E/T ∝ k at the critical
temperature, T = Tc = 1.
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Fig. 8. Topological phases of the graph ensemble defined by the energy E =
−∑i ki log(ki). (a) The largest degree, kmax, for N = 10, 224 vertices and M = 2, 556
edges. Each data point shows the value of kmax averaged in one simulation run be-
tween the simulation times of t = 5, 000N and 20, 000N MC steps. The data points
are connected to guide the eye. There is a sharp, continuous transition near T = 0.85
and a discontinuous transition (with a hysteresis) around T = 0.5 − 0.6. (b) The three
different plateaus in (a) correspond to distinct topological phases: kmax = O(1) to
the classical random graph, kmax = O(M) to the star phase (a small number of stars
sharing most of their neighbors) and kmax = O(

√
M) to the fully connected subgraph.

(c) At T = 0.84 and t = 600N , one minus the cumulative degree distribution, i.e.,
1 − P (k) =

∫ k

0 dk′pk′ , follows a power law, thus, the degree distribution decays as a
power law also. Figure from [14].

Ensembles with Neighboring Vertex Energies

Baiesi and Manna [11] have analyzed the canonical ensemble of connected graphs
defined by the energy shown in (19). This energy favors degree dissasoratativity,
i.e., a negative degree-degree correlation. As a function of temperature three
phases have been identified in this ensemble: the classical random graph at T →
∞, scale-free graphs at intermediate temperatures, and a phase with a small
number of stars at low temperatures.
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Fig. 9. Analytical phase diagram and Monte-Carlo simulation results for the graph
ensemble defined by the E = −smax energy. Main panel: The white and shaded areas
correspond to the ordered phase (containing a giant component) and the disordered
phase, respectively as given by (34). Inset: The order parameter Φ = Φs = smax/M
obtained from Monte-Carlo simulations as a function of the inverse temperature for
〈k〉 = 0.1 (triangles) and 〈k〉 = 0.5 (circles). Each data point shows averages taken
for 10 runs between the simulation times of t = 100N and 500N Monte-Carlo steps.
The open and closed symbols represent N = 500 and 1, 000 vertices, respectively.
The critical exponent, in agreement with the analytical approximations (solid lines,
see [13]), was found to be 1. Figure from [14].

Ensembles with Component Energies

Similarly to the single-vertex case, a decreasing, component-size dependent en-
ergy can also lead to phase transitions. The simplest case which we analyze in
this paragraph, is E = −smax. At low densities (〈k〉 < 1) one can observe a clas-
sical random graph at T →∞, whereas at low temperatures a giant component
is present. It can be shown that the dividing line between the two topological
phases is [14]

Tc(〈k〉) =
1

〈k〉 − 1− log(〈k〉) , (34)

which is also supported by numerical results (see Fig. 9). In the vicinity of the
critical temperature the order parameter can be approximated as
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Fig. 10. Phase diagram of the two-parameter ensemble of scale-free tree graphs pre-
sented in [44]. Two phases were identified: generic and crumpled. The points of the
dividing line to the right from the dot are scale-free graphs and belong to the generic
phase. Figure from [44].

Φ∗
s(T ) = 2

T−1 − T−1
c (〈k〉)

〈k〉2 − 3〈k〉+ 2
, (35)

indicating that the phase transition is continuous (see Fig. 9 for details).

Further Ensembles

For the ensembles of degenerate graphs introduced by Dorogovtsev et. al [12]
(see Sect. 3.6), with w(k) ∝ k + 1 − γ, a critical line, 〈k〉 = kc(γ), was found.
Below this line the degree distribution has an exponential cutoff and above that
a condensate occurs where a finite fraction of all edges is attached to an infinitely
small fraction of nodes.

In an ensemble of connected tree graphs with a fixed, power law degree
sequence, Burda et. al [44] have reported a phase transition as a function of
two parameters: γ, the exponent of the degree distribution, and α, related to
the probability of subgraphs (see Fig. 10). The analytic form of the dividing line
between the identified generic and crumpled phases was computed, and numerical
simulations were carried out using a Monte-Carlo sampling technique.

6 Summary

Graph models with energies provide a natural way to define microcanonical,
canonical and grand canonical ensembles. These ensembles are often generated
by equilibrium restructuring processes obeying detailed balance and ergodicity.
Also, to describe a wider range of network models, it is useful to extend the
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definition and consider ensembles without energy as well. We have reviewed
the main features of currently studied equilibrium graph ensembles, with a fo-
cus on degree-degree correlations, component sizes and spectral properties. We
have also discussed continuous and discontinuous topological phase transitions
in equilibrium graph ensembles. A solid basis of the equilibrium statistical me-
chanics of networks, as presented in this article, can facilitate the application
of statistical physics tools in the field of networks, and can help to expand the
analyses towards problems of high current interest, such as optimization and
reverse engineering.
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Abstract. Complex networks are characterized by highly heterogeneous distributions
of links, often pervading the presence of key properties such as robustness under node
removal. Several correlation measures have been defined in order to characterize the
structure of these nets. Here we show that mutual information, noise and joint en-
tropies can be properly defined on a static graph. These measures are computed for a
number of real networks and analytically estimated for some simple standard models.
It is shown that real networks are clustered in a well-defined domain of the entropy-
noise space. By using simulated annealing optimization, it is shown that optimally
heterogeneous nets actually cluster around the same narrow domain, suggesting that
strong constraints actually operate on the possible universe of complex networks. The
evolutionary implications are discussed.

1 Introduction

Many complex systems are to some extent describable by the network of inter-
actions among its components. Beyond the specific features displayed by each
net, it has been shown that a number of widespread properties are common to
most of them. One is the presence of the small-world phenomenon and the sec-
ond the observation that in many cases they are highly heterogeneous in their
connectivity patterns [1-4].

Heterogeneity can be easily identified by looking at the so called degree dis-
tribution Pk, which gives the probability of having a node with k links. Most
complex networks (both natural and artificial) can be described by a degree
distribution Pk ∼ k−γφ(k/ξ) where φ(k/ξ) introduces a cut-off at some char-
acteristic scale ξ [5]. An example of such scale-free networks is provided by the
architecture of digital electronic circuits (Fig. 1). It has been shown [6] that these
systems exhibit long tail distributions of links, where the nodes are electronic
components and the links are physical wires between units. Most elements are
connected to a few others (for circuits this usually means nearest neighbors) but
some are connected to many others. In Fig. 2 several examples of the observed
distributions for both analog (a-b) and digital (c-d) systems are shown. Although
analog systems are closer to an exponential distribution (i. e. ξ small) digital,
large-scale systems3 exhibit scaling behavior, with γ ∼ 3.
3 Similar results have been obtained by looking at large-scale systems, such as VLSI

networks. See for example: http://citeseer.nj.nec.com/450707.html

R.V. Solé and S. Valverde, Information Theory of Complex Networks: On Evolution and Architec-
tural Constraints, Lect. Notes Phys. 650, 189–207 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Heterogeneity is a widespread feature of most (but not all) complex networks.
An example from technology graphs are electronic circuits (upper plot) which have
been shown to display scale-free distributions of links.
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Fig. 2. Cumulative degree distributions for several examples of analogic (a-b) and
digital (c-d). Although the analogic systems are less heterogeneous, analogic circuits
(particularly large systems) display scaling in their degree distributions (Left plots are
linear-log and right plots are in log-log scale).
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Scale-free nets have been shown to be obtainable through a number of mech-
anisms, including preferential attachment [2,3,7,8], optimization [9,10], dupli-
cation and divergence [11,12] or fitness-dependent, rich-gets-richer mechanisms
[13] or the “copying” model [14]. Beyond the common qualitative architecture
shared by these systems, the dynamical patterns and their time scales that take
place on top of these webs differs from system to system, although in a way or
another deals with information propagation and/or processing. Moreover, the
response to node removal differs from system to system. Although genetic and
metabolic networks seem to be fairly robust against perturbations of different
types, a totally different situation arises in electronic circuits. In biological nets
failure of highly connected components will typically end in system’s failure (for
example, at the cellular level). But failure (by mutation or transient change)
of a gene is often buffered by the rest of the system. This is not the case for
electronic circuits and, to a similar extent, by software networks. Failure of any
component typically leads to system’s failure, no matter how much linked is the
given unit.

Several quantitative measures can be used in order to characterize a given
network. The first step is to define an appropriate representation in terms of
a graph Ω, defined by a pair Ω = (W,E), where W = {si}, (i = 1, ..., N)
is the set of N nodes (species, proteins, neurons, etc) and E = {{si, sj}} is
the set of edges/connections between nodes. The adjacency matrix ξij indicates
that an interaction exists between two nodes si, sj ∈ Ωp (ξij = 1) or that the
interaction is absent (ξij = 0). Several statistical properties, such as average
degree, clustering or diameter can be defined from the adjacency matrix.

But the universe of possible networks (Fig. 3), although not arbitrarily di-
verse, displays a number of structural variations that cannot be compressed
by the previous average quantities. Real networks are not only typically het-
erogeneous, but they also involve other types of features, such as hierarchical
organization [15].

In Fig. 3 we qualitatively summarize the basic types of network organization
by using a generic, qualitative parameter space. Here heterogeneity, modularity
and randomness define three axes. Assuming that such three parameters can
be properly defined, different real and model graphs can be located at different
locations. The current knowledge of network architecture in many different sys-
tems strongly indicates that the domain of random networks with long tailed
degree distributions and some amount of modular structure are rather densely
occupied. In spite that the evolutionary process leading to these different sys-
tems are rather diverse, it is interesting to see that there is a strong convergence
towards this type of architectures. Here we will explore this problem by using
information-based statistical measures.

2 Measuring Correlations

Beyond the degree distribution and average statistical measures, correlation mea-
sures offer considerable insight into the structural properties displayed by com-
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Fig. 3. A zoo of complex networks. In this qualitative space, three relevant character-
istics are included: randomness, heterogeneity and modularity. The first introduces the
amount of randomness involved in the process of network’s building. The second mea-
sures how diverse is the link distribution and the third would measure how modular is
the architecture. The position of different examples are only a visual guide. The domain
of highly heterogeneous, random hierarchical networks appears much more occupied
than others. Scale-free like networks belong to this domain.

plex networks. One particularly interesting is network asortativeness [16]. Some
networks show assortative mixing (AM): high degree vertices tend to attach to
other high-degree vertices. At the other extreme there are graphs displaying dis-
sortative mixing (DM), thus involving anticorrelation. The later are common in
most biological nets, whereas the former are common in social and collaboration
networks. It has been suggested that the presence and sign of assortativeness in
this nets can have deep implications to their resilience under node removal or
disease propagation.

Following a previous analysis [16] we will be interested here not in the degree
distribution Pk but instead in the remaining degree: the number of edges leaving
the vertex other than the one we arrived along (Fig. 4). This new distribution
q(k) is obtained from:

q(k) =
(k + 1)Pk+1

〈k〉 (1)

where 〈k〉 =
∑
k kPk. In a network with no assortative (or disassortative) mixing

qc(j, k) takes the value q(j)q(k). If there is assortative mixing, qc(j, k) will differ
from this value and the amount of assortative mixing can be quantified by the
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Fig. 4. Computing correlations in a network. Here two given, connected nodes si, sj

are shown, displaying different degrees ki, kj . Since we are interested in the remaining
degrees, a different value needs to be considered (here indicated as qi, qj).

connected degree-degree correlation function

〈jk〉 − 〈j〉 〈k〉 =
∑

jk

jkqc(j, k)−



∑

j

jq(j)




2

(2)

where 〈. . . 〉 indicates an average over edges.
The correlation function is zero for no assortative mixing and positive or

negative for assortative or disassortative mixing respectively. In order to com-
pare different networks, normalization is obtained by dividing it with by its
maximal value, which it achieves on a perfectly assortative network, i.e., one
with qc(j, k) = q(k)δjk. This value is equal to the variance σ2

q =
∑
k k

2q(k) −
[∑

k kq(k)
]2 of the distribution q(k), and hence the normalized correlation func-

tion is

r =
1
σ2
q




∑

jk

jkqc(j, k)−



∑

j

jq(j)




2


 (3)

As defined from the previous equation, we have−1 < r < 0 for DM and 0 < r < 1
for AM. Both biological ad technological nets tend to display DM, whereas social
webs are clearly assortative.

Correlation functions have been widely used both in statistical physics [17]
and nonlinear dynamics [18]. A closely related, and more general approach in-
volves the use of information-based measures [19-21]. One specially important
quantity is the so called mutual information, which is a general measure of de-
pendence between two variables [19,22]. Correlation functions measure linear
relations, whereas mutual information measures the general dependence and is
thus a less biased statistic. The relevance of this difference is illustrated by the
analysis of chaotic dynamical systems: the second allows to determine the in-
dependent variables for (re-) constructing phase trajectories [23]. This cannot
be done from linear correlation functions. Additionally, the definition of mutual
information within the context of communication channels implies additional
statistical quantities (such as channel entropy and noise) that provide a detailed
characterization of system’s complexity. Here we show how these quantities can
be properly defined for complex networks, how they correlate with other statis-
tical measures and what is their meaning and implications.
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3 Entropy and Information

By using the previous distribution q = (q(1), ..., q(i), ..., q(N)), an entropy mea-
sure H(q) can be defined:

H(q) = −
N∑

k=1

q(k) log(q(k)) (4)

The entropy of a network will be a measure of uncertainty [19]. Within the
context of complex nets, it provides an average measure of network’s hetero-
geneity, since it measures the diversity of the link distribution. The maximum
is Hmax(q) = logN is obtained for q(i) = 1/N(∀i = 1, ..., N) and Hmin(q) = 0
which occurs when q = (1, 0., , , 0). In an information channel, there is a dis-
tinction between source and destination. Given the symmetric character of our
system, no such distinction is made here. In Fig. 5 we can see the impact of
heterogeneity on entropy. Specifically, we computed the entropy H(q; γ, ξ) for
γ ∈ (2, 3) and ξ ∈ (0, 50) for a distribution Pk ∼ k−γφ(k/ξ) using different scal-
ing exponents γ and cut-offs ξ. The impact of diversity (long tails) is obvious,
increasing the uncertainty. As the scaling exponent increases or the cut-off de-
creases, the network becomes less heterogeneous and as a result a lower entropy
is observed.

Similarly, the joint entropy can be computed by using the previous joint
probabilities:

H(q,q′) = −
N∑

k=1

N∑

k′=1

qc(k, k′) log qc(k, k′) (5)
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Fig. 5. Entropy of the remaining degree distribution obtained from a network with
degree distribution Pk ∼ k−γφ(k/ξ). Here H(q) = − ∫ Pk log Pkdk is shown against
the scaling exponent γ and the cut off ξ. Here we have used an exponential cut-off,
i. e. φ(k/ξ) = exp(−k/ξ) As expected, the entropy becomes larger for smaller γ and
decreases as ξ is reduced.
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Here qc(k, k′) is the joint probability, and it is normalized, i. e.:

N∑

k=1

N∑

k′=1

qc(k, k′) = 1 (6)

Since it considers all possible pairs of edges, this entropy provides a measure of
the average uncertainty of the network. As before, it can be understood in terms
of a measure of the diversity of linked pairs with given remaining degrees.

The mutual information I({qk}) of a given system is defined by means of the
difference:

I(q) = H(q)−Hc(q|q′) (7)

where the last term Hc(q|q′) is the conditional entropy that involves a different
set of conditional probabilities π(k|k′) [19]. They give the probability of observing
a vertex with k edges leaving it provided that the vertex at the other end of the
chosen edge has k′ leaving edges. This entropy (the “noise” in our graph) is
defined as:

Hc(q|q′) = −
N∑

k=1

N∑

k′=1

q(k)π(k|k′) log π(k|k′) (8)

Since the conditional and joint probabilities are related through:

π(k|k′) =
qc(k, k′)
q(k′)

(9)

the conditional entropy can actually be computed in terms of the two previous
distributions:

Hc(q|q′) = −
N∑

k=1

N∑

k′=1

qc(k, k′) log
qc(k, k′)
q(k′)

(10)

we thus have, from the previous expressions,

I(q) = H(q)−Hc(q|q′) (11)

= −
N∑

k=1

N∑

k′=1

qc(k, k′) log q(k) +
N∑

k=1

N∑

k′=1

qc(k, k′) log π(k|k′)

= −
N∑

k=1

N∑

k′=1

qc(k, k′) log
q(k)
π(k|k′)

which gives a final form for the information transfer function4:
4 The previous measures can be extended (with some care) into continuous distribu-

tions. In this case, we must assume that the continuous counterparts of the pre-
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I(q) =
N∑

k=1

N∑

k′=1

qc(k, k′) log
qc(k, k′)
q(k)q(k′)

(12)

Some limit cases are of interest here. The first corresponds to the maximum
information transfer, which is obtained, for a given {qk}, when Hc(q|q′) = 0,
i. e. when the conditional probabilities are such that π(k|k′) = 1 or 0 for all
k, k′ = 1, ..., N . Another is given by π(k|k′) = δk,k′ . This case corresponds to
a deterministic channel in standard information theory [19]. This implies that
qc(k, k′) = q(k′)δk,k′ which is precisely the case of perfectly assortative network
[16].

In analogy with information channels, we can find a maximum value of the
information, which we call the network’s capacity C = max{qk} I(q). There is no
general method to compute C for an arbitrary channel. It can only be computed
in some specific cases.

By using the previous functions, we will measure three key quantities: (a)
the amount of correlation between nodes in the graph, as measured by the in-
formation; (b) the noise level, as defined by the conditional entropy, which will
provide a measure of assortativeness and (c) the entropy of the q(k) distribu-
tion. Since the total information involves the two last terms in a linear fashion, a
noise-entropy space will be constructed and the distribution of real nets on this
space will be analysed.

4 Model Networks

In the following sub-sections some simple, limit cases will be considered. Different
types of architectures are represented by some standard networks exhibiting
different degrees of heterogeneity and randomness. The list is far from exhaustive
but provides an idea of what are the effects of each ingredient on information
transfer and entropies.

4.1 Lattices and Trees

Lattice-like networks are common in some man-made architectures, particularly
parallel computers [24-26]. These nets represent the highest degree of homogene-
ity and have no randomness. For a lattice, we have Pk = δk,z, where z is a fixed
number of links per node and δij the Kronecker’s delta function. For this ordered
graph ΩL, we have

vious degree distributions can be defined. The new distributions are such that
the normalization conditions:

∫
q(k)dk = 1 and

∫ ∫
qc(k, k′)dkdk′ = 1 are at

work. Provided that the distributions are well behaved, the information trans-
fer is now given by I(q) =

∫ ∫
qc(k, k′) log

(
qc(k,k′)
q(k)q(k′)

)
dkdk′. Accordingly, entropy

and noise would be obtained from: H(q) = − ∫ q(k) log(q(k))dk and Hc(q|q′) =
− ∫ ∫ qc(k, k′) log π(k|k′)dkdk′
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a b c

Fig. 6. Homogeneous networks: here two examples of a lattice (a) and a regular tree
(b) are shown as examples of deterministic nets. In both cases each node has the same
degree and thus both the entropy and the noise are zero. In (c) a random, Erdös-
Renyi graph is shown. Here some amount of heterogeneity is at work, but the variance
equals the mean and both noise and entropy are very close, giving as a result a small
information i. e. no correlations (in the N → ∞ limit).

q(k) = δk,z−1 (13)

qc(k, k′) = δk,z−1δk′,z−1 (14)

and thus

I(q) = H(q) = Hc(q|q′) = 0 (15)

This is a trivial case, since the homogeneous character of the degree distribution
implies zero uncertainty. The same situation arises for a Cayley tree (Bethe
lattice), where each node has exactly the same degree. Tree-like architectures
are also common in designed systems, such as small-sized software graphs [27]
and communication networks.

4.2 Erdös-Renyi Graphs

Erdös-Renyi graphs ΩN,p are random graphs such that two nodes are joined with
some probability p. These types of graphs have been widely used as the backbone
of null models of genetic [28] ecological [29] and neural [30] networks. It seems
also appropriate in describing the topology of species-poor ecosystems [31]. The
distributions are single-scaled and thus low uncertainty and high randomness are
at work. The average degree will be 〈k〉 ≈ pN , and it can be easily shown that
the probability Pk that a vertex has a degree k follows a Poisson distribution
Pk = e〈k〉〈k〉−k/k!, and thus

q(k) =
(k + 1)e〈k〉

〈k〉(k + 1)!
〈k〉(k+1) = Pk (16)

For this random graph, the independence associated to the link assignment im-
plies (for N large) qc(k, k′) = q(k)q(k′) and thus information transfer is zero.

An interesting extension of the standard ER graph allows to introduce mod-
ularity into the graph structure [15]. In general, the graph Ω is partitioned into
m subgraphs {Ωi}, (i = 1, ...,m) of relative size ηi = |Ωi| such that
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W =
m⋃

i=1

Wi (Wj ∩Wk = ∅) (17)

and such that
∑

i

ηi = 1 (18)

All nodes sj ∈ Ωi are connected with probability q and additionally we have
a probability p of connecting two nodes belonging to different modules. The
average degree of this system is < k >= pN/m + (m − 1)Nq/m. Given the
random wiring, it is not difficult to show that for large N information will be
typically very small.

4.3 Star Graph

Star graphs define another extreme within the universe of complex nets. Al-
though no real network is likely to be described in terms of a pure star graph,
it is certainly a common motif in many graphs. They are largely responsible for
the short distances achieved in SF networks. Besides, a star graph can be shown
to be optimal for low-cost communication [32].

This graph Ω∗ is characterized by a degree distribution:

p(k) =
n− 1
n

δk,1 +
1
n
δk,n−1 (19)

The corresponding distribution q(k) is:

q(k) =
1
2

[δk,0 + δk,N−1] (20)

and the joint probabilities are reduced to:

qc(k, k′) = δk,N−2δk′,0 (21)

The entropy is maximal, given by:

H(q) = −q(0) log q(0)− q(N − 1) log q(N − 1) (22)

which gives H(q) = log 2. The noise term is Hc(q|q′) = 0, since π(k|k′) = δkk′ .
The information is thus maximal, with I(q) = H(q) = log 2. The star graph
displays maximum information, as expected given the deterministic character of
the conditional probabilities.

5 Real Networks

In this section we present some analysis of the information measures as applied
to real networks. A large set of both technological and biological graphs has been
studied. Specifically, three groups of data sets were used in our analysis, all of
them known to be highly heterogeneous displaying scale-free architecture:
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Fig. 7. Information transfer and assortativeness appear to be roughly correlated in a
negative way. Here several systems have been used (all those analysed in this paper)
and a linear interpolation has been displayed. Although the trend is clear, consider-
able variance can be appreciated, probably due to the underlying nonlinear mapping
between both measures.

1. Metabolic networks: a graph theoretic representation of the biochemical re-
actions taking place in a given metabolic network can be easily constructed.
In this representation, a metabolic network is built up of nodes, the sub-
strates, that are connected to one another through links, which are the actual
metabolic reactions [33].

2. Software class diagrams: Nodes are software components and links are re-
lationships between software components. Class diagrams constitute a well-
known example of such graphs [34,35].

3. Electronic circuits: they can be viewed as networks in which vertices (or
nodes) are electronic components (e.g. logic gates in digital circuits and
resistors, capacitors, diodes and so on in analogic circuits) and connections
(or edges) are wires in a broad sense [6].

In Table 1 we also show a list of selected networks obtained from very different
systems and ordered from the higher to the lower information. The system’s
size N , average connectivity < k >, information measures and the assortative
mixing coefficient r are provided. We can see that most nets are disassortative, as
predicted in [16]. Actually, information and r appear to be negatively correlated.
This is shown in Fig. 7, where r is shown against I(q) for different systems.

It is important to see that, in spite of the roughly negative correlation (a
linear interpolation has been used) a large variance is observable, and a range of
r values is associated to each information transfer. Such a variable plot is likely
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Fig. 8. Noise-entropy plot for different real networks, both natural and artificial. Here
electronic circuits (open circles), metabolic (triangles) and software maps (squares) are
shown to be close to the zero-information line, i. e. when entropy equals to noise. An
example of a software graph that significantly deviates from the H = Hc. The network
is small and has a rather particular shape, involving a large hub plus another cluster
of connected classes.

to be the result of the nonlinear character of the information transfer, not shared
by the (linear) correlation defined by assortative mixing measures.

By displaying noise against entropy, the general picture that emerges is that
the set of complex networks analysed here displays typically uncorrelated struc-
ture. This is clear from the strongly linear dependence shown between noise and
entropy (Fig. 8). If two given, randomly chosen nodes with remaining degrees
k, k′ are typically connected with some probability, roughly irrespective of their
mutual degree (i. e. low assortativeness is present) we should expect:

qc(k, k′) ≈ q(k)q(k′) (23)

and thus we would have

π(k|k′) ≈ q(k) (24)

in this case, the noise will be given by:

Hc(q|q′) = −
N∑

k=1

N∑

k′=1

q(k, k′) log π(k|k′) (25)

= −
N∑

k=1

N∑

k′=1

q(k, k′) log q(k) = H(q) (26)

Statistical independence among node degree thus gives a predicted straight
line Hc(q|q′) = H(q) which seems to be suggested by our data. One first conclu-
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Table 1. Information-based measures computed for different real and theoretical sys-
tems. For each subset the list is ordered from higher to lower information transfer.

Network type N < k > I(q) H(q) Hc(q|q′) r

Technological networks

Software 1 168 2.81 1.19 3.04 1.85 -0.39
Software 2 159 4.19 1.03 3.99 2.97 -0.41
Internet AS 3200 3.56 0.50 4.77 4.27 -0.22
Software 3 1993 5.00 0.30 4.82 4.51 -0.08
Circuit TV 320 3.17 0.23 1.37 1.14 0.010
Circuit EC05 899 4.14 0.15 2.98 2.82 -0.15
Software linux 5285 4.29 0.12 4.47 4.35 -0.06
Powergrid 4941 2.67 0.06 3.01 2.95 0.003

Biological networks

Silwood park 154 4.75 0.94 4.09 3.14 -0.31
Ythan estuary 134 8.67 0.53 4.74 4.21 -0.24
p53 subnetwork 139 5.09 0.46 4.00 3.54 -0.24
Metabolic map 1173 4.84 0.39 3.58 3.19 -0.17
Neural net (C.elegans) 297 14.5 0.37 5.12 4.74 -0.16
Metabolic map 821 4.76 0.37 3.46 3.09 -0.18
Romanian syntax 5916 5.65 0.31 5.45 5.14 -0.18
Proteome map 1458 2.67 0.24 3.85 3.61 -0.21

Theoretical systems

Star graph 17 1.88 1.00 1.00 0.00 -1.00
Barabási-Albert 3000 3.98 0.25 4.12 3.85 -0.078
Erdös-Renyi 300 6.82 0.06 3.31 3.25 -0.005
Modular E-R 500 10.3 0.04 3.67 3.62 -0.001

sion from this analysis is that network correlations in real graphs are small, being
the diversity of pairs of linked nodes a direct consequence of the heterogeneous
character of the degree distribution and nothing else. In spite that the cloud of
points deviates from the straight line, these deviations might result from finite-
size effects. Actually, if we plot information measures I(q;N) against system’s
size N , it can be shown that they follow a scaling I(q;N) ∼ N−1.

Two points clearly deviate from the general pattern displayed by the majority
of networks analysed here. Both are small systems and correspond to software
graphs, and one of them is shown in Fig. 8b. As we can see this is a rather
peculiar system, involving a large hub connected to a small module. It is thus
a small structure dominated by the star graph component together with a ho-
mogeneous component. Such a nonuniform structure is likely to result from an
process dealing with engineered, small-sized systems but unlikely to result from
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a natural process or from artificial evolution when some complexity thresholds
are reached.

One possible explanation for the previous result is that correlations simply do
not play any particular role in shaping network architecture5. However, it could
be also argued that such a lack of correlation has been either chosen or selected
for some underlying reason. But there’s also another (more likely) scenario: that
the observed structures are actually the only possible choices, at least when some
complexity threshold is reached.

6 Simulated Annealing Search

The spread of real networks close to the zero-information boundary suggests that
the possible structures allowed to occur (with a given heterogeneity and a given
correlation) is rather constrained. This might be a consequence of the irrelevance
of correlations for these systems but it would also be the case that some selective
pressure is made towards heterogeneous networks with small correlations (i. e.
no assortativeness).

In order to test the previous idea we can perform a Monte Carlo search in
network space. Specifically, we explore the space of possible pairs entropy-noise
available to candidate graphs Ω, i. e. Γ = {H(q), Hc(q|q′)}, which is constrained
by two well-defined boundaries6:

∂1Γ = {(H(Ω), Hc(Ω)) | Hc(Ω) = 0} (27)
∂2Γ = {(H(Ω), Hc(Ω)) | H(Ω) = Hc(Ω)} (28)

where H(Ω) and Hc(Ω) indicate the entropy and noise associated to a given
graph Ω. It is not difficult to show that only two points occupy the lower bound-
ary, i. e. ∂1Γ = {(0, 0), (log 2, 0)}. These correspond to purely homogeneous
graphs and the star graph. The second boundary has already been studied.

For every random sample point (H,Hc), an optimizing searching process
looks for candidate networks that minimize the error term or potential function
U(Ω):

U(Ω) =
√

(H −H(Ω))2 + (Hc −Hc(Ω))2 (29)

Here, we use the Boltzmann strategy presented in [36,37]. The algorithm ex-
plores the search space defined by all possible networks of N nodes. We assume
that every possible state visited by the search process can be properly charac-
terized by the scalar Ui. In the stationary limit (for a large number of searchers)
5 This conclusion is reached under our specific, quasi-local definition of remaining

degree. Other approaches, considering instead shortest paths among nodes might
reveal important differences

6 Strictly speaking, we are considering the entropies associated to the remaining degree
distribution of a graph sampled from some graph ensemble by a stochastic process
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define the occupation probability pi(t) of certain state i at time t. We require
the optimization process to increase the occupation probability for the state of
minimal potential. In general, many local minima exist and the search could be
trapped in one of these states, which is undesirable.

A dynamics that finds the minimum is given by:

dpi(t)
dt

=
∑

i 	=j
Aijpi(t)−Ajipj(t) (30)

where

Aij = A0
ij ∗

{
1

exp (−(Ui − Uj)/T (t))
;Ui < Uj
;Ui ≥ Uj (31)

is the transition probability for the searcher to move from state i to state j.
The term A0

ij is 1 if and only if the state j can be reached by a little change
or mutation and 0 otherwise. Here, the valid changes involve edge addition,
edge removal and edge rewire, which are all equally selected with the same
probability. The number of nodes of the network is always fixed. Transitions to
lower energy states are always accepted but local minima is avoided because
thermal fluctuations like in simulated annealing . As the search progresses, the
temperature T (t) is decreased following a power law rule:

T (t) =
T0

1 + at
(32)

where T0 is the initial temperature (or starting degree of disorder) and a is the
cooling rate. This allows the optimization process to perform a smooth transition
from coarse to detailed search. The process starts from a random graph of N
nodes with a given connectivity < k > and lasts a given number of simulation
steps.

By measuring the final error ε(Ω) = U(Ω) for a large number of Monte Carlo
samples it is possible to approximate the likelihood of a particular candidate
network. Here we have used ε = 0.003 and the optimization parameters are:
N = 500, < k >= 3, T0 = 0.01, a = 0.002 and 350000 steps. Our results indicate
that the potential is effectively minimized only for a domain of pairs (H,Hc)
along the second boundary ∂2Γ . In Fig. 9a the (smoothed) probability density
P(H,Hc) of optimized networks is shown (for the upper part of the parameter
space, P(H,Hc) = 0). The distribution is peaked around a domain of Γ that
fits very well the range of values satisfied by most real networks (compare with
Fig. 8). There is also a clearly empty zone outside this domain, indicating that
networks are difficult or simply impossible to find. An example of the optimized
graphs is shown in Fig. 9b. This particular graph is scale-free, with an exponent
γ ≈ 2.26 and a cut-off at ξ ∼ 50. The other networks in this domain are also SF,
with an average scaling exponent < γ >∼ 2.5. By searching candidate networks
that simultaneously fit the two requirements of given entropy and noise, the
only possible solutions to be found are scale-free graphs with small levels of
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Fig. 9. (a) Noise-entropy probability plot obtained by exploring the Γ space using a
Monte Carlo sampling. Different pairs of noise and entropy are generated and a simu-
lated annealing search is performed looking for candidate networks. Here the smoothed
probability distribution obtained from this algorithm is shown in (a). The highest den-
sity of observed networks appears to be close to the same domain observed for real
networks. In (b) an example of a small sized network (N = 142, < k >= 2.64) is
shown, together with its degree distribution (c). The cumulative degree distribution
follows power law with exponent −1.26 (i. e. γ = 2.26). The graph has been obtained
close to the boundary H = Hc (with H(q) = 3.69, H(q|q′) = 3.09).

correlations. Interestingly, software networks deviate from this rule and are to
be found along the upper region of the boundary (H > 4), where potential is
not minimum. This might be a signature of frustrated optimization in software
design processes [10].

7 Discussion

Complex networks display heterogeneous structures that result from different
mechanisms of evolution [38]. Some are created through multiplicative processes
(such as preferential attachment) while others seem to be well described in terms
of optimization mechanisms [9]. Our study indicates that the possible universe
of complex networks is actually rather constrained. Networks display scale-free
architecture but also small assortativeness. The search algorithm, instead of as-
suming the presence of a given predefined mechanism of network growth, simply
searches for candidate solutions to an optimization algorithm trying to approach
simultaneously some amount of network heterogeneity and correlations. The re-
sult is that indeed networks are scale-free and involve low degree of correlations,
but such situation is constrained to a well-defined domain. This domain is re-
markably similar to the one inhabited by real graphs. Outside this domain, it is
not feasible to find graphs simultaneously satisfying the two requirements.
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The impact of SF architecture on biological and artificial networks is clearly
different. Although the first can take advantage of the high homeostasis provided
by scaling laws the second are completely dependent on the correct functioning
of all units. Failure of a single diode in a circuit or of a single component in
a software system leads to system collapse. Thus, homeostasis can not be a
general explanation for scaling. We have conjectured that the leading force here
is an optimization process where reliable communication at low cost shapes
network architecture in first place [38]. The need of a sparse graph can be a
consequence of different requirements. In an electronic circuit, saving wire is a
strong constraint. In metabolic or genetic networks, it might be important in
order to reduce the impact of unstable positive feedbacks. This can be satisfied
by means of sparse graphs displaying scale-free architecture. What is the role
of correlations? For the systems analysed here correlations don’t seem to be
of relevance to network performance. But what is more important: the lack of
networks outside the densely populated domain is not due to some relevant,
perhaps adaptive trait. It is actually a consequence of higher-level limitations
imposed to network architecture.

Such a constrained set of possibilities fits very well the view of evolution as
strongly dominated by intrinsic constraints [39-41] (see also [42] for a critical
discussion). Under this view, the outcome of evolutionary searches would be not
any possible architecture from the set of possible patterns but a choice from a
narrow subset of attainable structures.
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27. S. Valverde, R. Ferrer and R. V. Solé, Scale-free networks from optimal design.

Europhys. Lett. 60, 512-517 (2002).
28. S. A. Kauffman. Origins of Order. Oxford U. Press, New York (1993).
29. R. M. May. Stability and complexity in model ecosystems. Princeton U. Press, New

York (1973).
30. S. Amari. Characteristics of random nets of analog neuron-like elements. IEEE

Trans. Man and Cybernetics 2, 643-657 (1972).
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Abstract. The extremal characteristics of random structures, including trees, graphs,
and networks, are discussed. A statistical physics approach is employed in which ex-
tremal properties are obtained through suitably defined rate equations. A variety of
unusual time dependences and system-size dependences for basic extremal properties
are obtained.

1 Introduction

The goal of this article is to show that methods of non-equilibrium statistical
physics are very useful for analyzing extreme properties of random structures.
Extremes are compelling human curiosities — we are naturally drawn to compi-
lations of various pinnacles of endeavor, such as lists of the most beautiful people,
the richest people, the most-cited scientists, athletic records, etc [1]. More impor-
tantly, extremes often manifest themselves in catastrophes, such as the failure
of space shuttles, the breaching of dams in flood conditions, or stock market
crashes. The theory of extreme statistics [2–4] is a powerful tool for describing
the extremes of a set of independent random variables; however, much less is
known about extremes of correlated variables [5–7]. Such an understanding is
crucial, since complex systems are composed of many subsystems that are highly
correlated.

While estimates for the failure probability of a nuclear plant or a space shuttle
still involve guesswork, understanding the extremes of certain correlated random
variables is a hard science. Below we demonstrate this thesis for various extremal
characteristics of geometrical features in basic evolving structures, such as ran-
domly growing trees, graphs, and networks. In each case, the growth process
of the structure induces correlations in the variables whose extremes are the
focus of this review. We shall illustrate how the statistical physics of classical
irreversible processes can be naturally adapted to elucidate both typical and
extremal statistics.

We obtain new scaling laws for extreme properties and consequently give new
insights for a variety of applications. For example, random trees arise naturally
in data storage algorithms [8–10], an important branch of computer science, and
the maximal branch height yields the worst-case performance of data retrieval
algorithms. Random trees also describe various non-equilibrium processes, such
as irreversible aggregation [11,12] and collisions in gases [13]. Random graphs
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Notes Phys. 650, 211–233 (2004)
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[14,15] have numerous applications to computer science and to physical pro-
cesses such as polymerization [16]. Random growing networks are used to model
the distributions of biological genera, word frequencies, and income [17,18], the
structure of the Internet [19], the World-Wide Web [20], and social networks [21,
22].

As a subtext to this review, it is worth mentioning that problems at the
interface of statistical physics and computer science have been fruitful and sym-
biotic. Algorithms and methods developed in one area have found application
in the other field; important examples include the Monte Carlo method, sim-
ulated annealing, and the Dijkstra algorithm. Statistical physics concepts such
as criticality, scaling, universality, and techniques such as replicas have proved
useful in diverse interdisciplinary applications such as algorithmic complexity,
combinatorial optimization, error correction, compression algorithms, and image
restoration; a review of these topics can be found in [23–28].

We will focus on three ubiquitous random structures — trees, graphs, and
networks. Random trees (Sect. 2) can be viewed as the space-time diagram of
irreversible aggregation with a size-independent merging rate. This connection
allows to apply well-known results in aggregation to elucidate the growth of the
largest component (the leader) and the number of changes in its identity. The
number of lead changes grows quadratically with logarithm of the system size.
The time-dependent number of lead changes becomes asymptotically self-similar,
following a scaling form in which the scaling variable involves a logarithmic,
rather than an algebraic ratio, between the typical size and the system size.
Qualitatively similar properties also characterize the smallest component in the
system.

Another characteristic of random trees is their height. The corresponding
branch height distribution is Poissonian, reflecting the random nature of the
merger process that underlies tree growth. The growth of the tree height (the
maximal branch height) has an interesting relation to traveling wave propaga-
tion. The velocity of this wave yields typical and extremal height statistics as a
corollary.

Random graphs (Sect. 3) are also equivalent to an aggregation process in
which the merging rate of two components is proportional to the product of their
sizes. This system undergoes a gelation transition in which a giant component,
that contains a finite fraction of the entire mass in the system, arises. Near
this transition, the size distribution of graph components follows a self-similar
behavior. Despite the differences with the size distribution of random trees,
leadership statistics in these two systems are remarkably robust.

Random networks (Sect. 4) can be grown by adding nodes and attaching
the new node to a pre-existing node with a rate that depends on the degree
of the target node. A hallmark of such systems is the statement that “the rich
get richer”; that is, the more popular nodes tend to remain so. This adage is
in keeping with human experience — a person who is rich is likely to stay rich,
as evidenced by the continued appearance of the same individuals on lists of
wealthiest individuals [29]. We examine whether the rich really get richer in
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growing networks by studying properties of the nodes with the largest degree.
In keeping with analysis of random trees and graphs, we focus on the identity of
the most popular node as a function of time, the expected degree of this most
popular node, and the number of lead changes in the most popular node as a
function of time.

2 Random Trees

Random trees underlie physical processes such as coagulation, collisions in gases
[13], and fragmentation [30,31]. They are also important in computer science al-
gorithms such as data storage and retrieval [8,9,32–35]. Different extremal char-
acteristics may be important in different contexts. In aggregation processes, the
maximal aggregate size is of interest. In other cases, the maximal or the minimal
branch height are of interest. In Lorentz gases, the maximum branch height is re-
lated to the largest Lyapunov exponent, while in data storage, extremal heights
yield best-case and worst-case algorithm performances.

Consider a forest of random trees that is generated randomly as follows
(Fig. 1). Starting with N single-branch trees, two trees are picked randomly and
merged. This process is repeated until a single tree containing all N branches
is generated. We treat the merger process dynamically. Let s be the number of
trees. The transition s→ s−1 occurs with rate rs proportional to the total num-
ber of pairs. Choosing 2/N as the merger rate for each pair (i.e., rs = s(s−1)/N)
is convenient as in the thermodynamic limit N → ∞, the normalized density
c = 〈s〉/N evolves according to d

dtc = −c2. Given the initial condition c(0) = 1,
the density is

c(t) =
1

1 + t
. (1)

Fig. 1. Random trees. A forest of random growing trees is equivalent to the space-time
evolution of irreversible aggregation with a size-independent merging rate. Each branch
corresponds to the world line of a cluster. The thickness of each branch is proportional
to the size of the cluster. The sizes of the 4 trees are (left to right) 3, 1, 4, 2 and their
heights are 2, 0, 3, 1.
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The number of trees is therefore N = 〈s〉 = N(1 + t)−1. Moreover, conservation
of the total number of branches yields the average tree size m = 1 + t. The
results are stated in terms of the physical time t, but can be easily re-expressed
in terms of the intrinsic quantities N or m.

2.1 Size Statistics

Let nk(t) be the number of trees with k branches at time t. The normalized
density ck(t) = nk(t)/N evolves according to the Smoluchowski rate equation
[11,12,36]

dck
dt

=
∑

i+j=k

cicj − 2cck (2)

with the monodisperse initial conditions ck(0) = δk,1. This evolution equation
reflects the fact that trees merge randomly, independent of their size. The well-
known solution to this equation is

ck(t) =
tk−1

(1 + t)k+1 . (3)

Taking the long time limit t→∞ while keeping the variable k/t fixed, the size
distribution approaches the asymptotic form ck(t) → t−2e−k/t. More generally,
this can be recast as the scaling form

ck(t) � k−2
∗ Φ(k/k∗), (4)

with the scaling function Φ(z) = e−z and the typical tree size k∗ � t.

2.2 The Leader

Extremal characteristics, such as the size of the largest tree — the leader — and
the number of lead changes, follow directly from the size distribution. We focus
on the asymptotic time regime3, where most of the lead changes occur, and use
the scaled size distribution (4). Let l(t,N) be the average size of the leader at
time t. The basic criterion used to determine the size of the leader is

Ul(t) ≡
∑

j≥l
nj � Nt−1e−l/t = 1. (5)

This simply states that there is one cluster whose size exceeds l(t,N). Solving
for the leader size gives

l(t,N) � t ln
N

t
. (6)

3 The behavior in the early time regime, t � 1, can be obtained by using the exact
time dependence (3).
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This expression holds in the asymptotic time regime t 1. For short times the
leader size grows logarithmically with system size l(t ≈ 1) ∼ lnN . Finally, at
times of the order N , the leader becomes of the order of the system size. The
final leader, that is, the ultimate winner, emerges on a time scale of the order
N . This is consistent with the fact that the average “final” time for a single tree
to remain in the system tf , is given by tf = N − 1 as follows from N = 1.

We now consider the quantity L(t,N), defined as the average number of lead
changes during the time interval (0, t). Lead changes occur when two trees (nei-
ther of which is the leader) merge and overtake the leader. The flux of probability
to surpass the leader is simply the rate of change of the cumulative distribution.
Thus d

dtL(t,N) = ∂
∂tUk

∣∣
k=l. Using Ul = 1 yields d

dtL(t,N) � lt−2 � t−1 ln N
t .

Therefore, the time-dependent number of lead changes is [37]

L(t,N) � ln t lnN − 1
2
(ln t)2, (7)

which can be recast in the self-similar form

L(t,N) � (lnN)2 F (x), x =
ln t
lnN

, (8)

with the quadratic scaling function F (x) = x− 1
2x

2. Notice the unusual scaling
variable — a ratio of logarithms — in contrast to the ordinary scaling vari-
able z = k/k∗ underlying the size distribution (4). The scaling variable still
involves the typical size, x = ln k∗/ lnN . Note also that the leader size (6) can
be expressed in terms of the same scaling variable l(t,N) � t lnN f(x) with
f(x) = d

dxF (x) = 1 − x. Numerical simulations confirm this scaling behavior
[37]. However, the convergence to these asymptotics is slow due to the logarith-
mic functional dependences on the system size and time.

The total number of lead changes L(N) as a function of system size N follows
from the time dependent behavior (7). The eventual winner emerges at time of
order N . Using L(N) ∼= L(t ∝ N,N) we obtain

L(N) � A(lnN)2 (9)

with A = F (1) = 1/2 (see Fig. 2). The correction to this leading asymptotic
behavior is of the order lnN . The logarithmic dependence implies that lead
changes are relatively infrequent.

Both the size of the leader and the number of lead changes grow logarith-
mically in the early time regime, l(t ≈ 1, N) ∝ L(t ≈ 1, N) ∝ lnN . The first
relation implies that initially the leader size predominantly grows in increments
of one and every leader is a new leader. When t  1, the size of the leader
greatly exceeds the number of lead changes as the increments of the leader size
grow roughly linearly with time.

The distribution of the number of lead changes Pn(t,N), i.e., the proba-
bility that n lead changes occur by time t, can be determined by noting that
lead changes occur by a random process in which the average flux of proba-
bility to surpass the leader is d

dtL. Hence, the probability distribution obeys
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Fig. 2. The total number of lead changes L(N) versus the system size N . The simu-
lation data represents an average over 104 independent realizations of the random tree
generation process with N up to 108.

d
dtPn = ( ddtL) [Pn−1 − Pn] with the initial condition Pn(0, N) = δn,0. Therefore,
the distribution of the number of lead changes is Poissonian and it is character-
ized solely by the average number of lead changes

Pn(t,N) =
[L(t,N)]n

n!
e−L(t,N). (10)

As a result, the ultimate number of lead changes is also Poissonian distributed,
Pn(N) = Ln

n! e
−L, with L ≡ L(N) given by (9). Asymptotically, the Poissonian

distribution approaches a Gaussian in the proximity of the peak:

Pn(N) � 1√
2πL

exp
[
− (n− L)2

2L

]
. (11)

The number of lead changes is a self-averaging quantity; however, the system
size should be huge to ensure that relative fluctuations δn

n ∼
√
L
L ∼ (lnN)−1 are

small. Hence in a given realization for a system of size N = 108 (the maximum
size in our simulations), lead changes are still relatively erratic.

Another interesting quantity is S(N), the probability that no lead change ever
occurs. This is obviously the “survival” probability that the first leader, whose
size is initially k = 2, never relinquishes the lead. This survival probability is
given by S(N) ≡ P0(N) = exp(−L), so it decays faster than a power-law but
slower than a stretched exponential (Fig. 3)

S(N) � exp
[−A(lnN)2

]
. (12)

The above formalism extends to the statistics of the rth-largest tree. Using
Ul = r, the average size of the rth-largest tree grows according to lr � t ln N

rt .
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Fig. 3. The survival probability of the first leader S(N) versus the system size N
obtained from an average over 1010 independent realizations. The slope A = 1/2 is in
accordance with (12).

Moreover, the total number of changes in the group of r-largest trees grows
linearly with r according to r

2 (lnN)2.
Among several open problems we mention just two: What is the size of the

winner (the last emerging leader)? At what time does the winner emerge? The
averages of both these random quantities grow linearly with N , but we do not
know the proportionality factors. The computation of these factors, and the
determination of the distribution of these random quantities, are interesting
open problems.

2.3 The Laggard

At the opposite end of the size spectrum sits the laggard, the smallest component
in the system. Unlike the leader, the laggard does not change its size for a
relatively long period. The total number of monomers is n1 = N(1+ t)−2. Thus,
monomers are depleted from the system only when the time becomes of the order
of N1/2. Until this time, the laggard size remains unity. To investigate laggard
statistics in the interesting regime N1/2 � t� N we employ the same approach
as for the leader. First, we estimate the cumulative distribution uk =

∑k
j=1 nj

and find uk � t−1(1 − e−k/t). Then we use the criterion u� = 1 and get the
average laggard size

�(t,N) � −t ln
(

1− t

N

)
. (13)

In the time regime N1/2 � t� N , the above expression simplifies to �(t,N) �
t2/N . As in the leader case, the laggard size is proportional to the typical size,
but modified by a logarithmic correction.
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The number of changes in the identity of the laggard, L(t,N), is given by
d
dtL(t,N) = − ∂

∂tuk
∣∣
k=l. Using asymptotics for u and �, we simplify the right-

hand side and obtain d
dtL = t−1−Nt−2(1− t/N) ln(1− t/N) � 2t−1 for t� N .

Integrating over time and recalling that the first laggard change occurs at time
of the order N1/2 we obtain L(t,N) � ∫ t

N1/2 ds 2s−1. Consequently,

L(t,N) � 2 ln t− lnN. (14)

This behavior can be recast in the scaling form L(t,N) � (lnN)F (x) with the
same scaling variable as in the leader problem, x = ln t/ lnN , and the linear
scaling function F (x) = 2x− 1. The total number of laggard changes saturates
at

L(N) � lnN. (15)

Numerical simulations confirm this behavior. Thus, the total number of laggard
changes is much smaller compared with the leader. This behavior is intuitive: it
is more difficult to catch up with the rest of the pack than it is to remain ahead
of the pack.

The distribution of the number of laggard changes is also Poissonian, as in
(10). Moreover, the survival probability still decays exponentially with the total
number of changes S(N) = exp[−L(N)]. However, the growth of the average is
only logarithmic in this case, so the survival probability decays as a power law

S(N) ∼ N−1, (16)

i.e., much slower than in the leader case. This can be understood by considering
the probability that the laggard remains a monomer until the very last merger
event between the final two subtrees. Interestingly, the size distribution of these
final two trees is uniform as can be seen immediately by considering the time-
reversed merger process. The probability that the laggard in the last merging
event is a monomer is simply 2/(N − 1). This lower bound for the survival
probability is indeed consistent with (16). An interesting open question is the
size distribution of the loser (the final laggard).

2.4 Height Statistics

The height (or depth) of a tree branch provides another fundamental size char-
acterization. It is defined as the number of different-width line segments between
a branch and the tree root (see Fig. 1). Thus, different heights correspond to
different branches in the tree. It is therefore natural to ask: What is the typical
branch height? What is the typical tree height (the maximal branch height)?
What is the maximal tree height?

First, consider the distribution of branch heights. Each time two branches
merge, the distance to the root increases by one (the branch height can also be
viewed as the generation number). Let h(t) be the average number of merger
events experienced by a given branch up to time t. The rate of growth of the
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average height is proportional to the number density of trees and since the
merger rate equals 2, we have d

dth(t) = 2c(t), with h(0) = 0. Therefore, the
average branch height is h(t) = 2 ln(1 + t), or, in terms of the average tree size
m,

h = 2 lnm. (17)

Thus, the branch height grows logarithmically with its size. Because the merger
process is random, the probability Pn(t) that the branch height equals n is
Poissonian

Pn(t) =
[h(t)]n

n!
e−h(t), (18)

with h(t) the average height.
The height of a tree is defined as the maximal branch height. For example, the

(left-to-right) trees in Fig. 1 have heights of 2, 0, 3, and 1, respectively. Based on
the branch height behavior, we anticipate that the tree height grows logarithmi-
cally, Hmax � vmax lnm. Similar to the calculation of the maximal size from the
cumulative distribution, the tree height can be obtained heuristically from the
properly normalized branch height distribution c−1Pn via

∑
n≥Hmax

c−1Pn = 1.
Estimating the tails of the Poisson distribution (18) by using the Stirling formula
leads to the transcendental equation [38]

v ln
2e
v

= 1. (19)

The larger root of this equation yields the growth of the tree height

Hmax � vmax lnm, vmax ∼= 4.31107. (20)

This value was obtained in different contexts, including fragmentation processes
[30,31], and collision processes in gases, where this value is related to the largest
Lyapunov exponent [13].

Each tree carries a height k. The result of a merger between trees with heights
i and j is a tree with height max(i, j) + 1. The number density of trees with
height k, Hk(t), evolves according to the master equation (the initial conditions
are Hk(0) = δk,0)

dHk
dt

= H2
k−1 − 2cHk +

∞∑

j=k

Hj + 2Hk−1

k−2∑

j=0

Hj . (21)

The rate equations (21) are more complicated than the recursive Smolu-
chowski equations (2) for the tree size distribution. Fortunately, one can extract
analytically almost all relevant information without explicitly solving (21). Fig-
ure 4 shows that the normalized distribution c−1Hk approaches a traveling wave
in the large time limit. This suggests seeking an asymptotic solution of the travel-
ing wave; this construction therefore greatly simplifies our analysis. The traveling
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Fig. 4. The traveling wave. Shown is the normalized distribution c−1Hk vs. k at dif-
ferent times τ = 10, 20, 30, 40 obtained from numerical integration of the rate equation
(22).

wave form has significant qualitative implications for the tree height statistics,
e.g., fluctuations with respect to the mean saturate to some fixed value.

The equations simplify using the cumulative fractions Ak = c−1 ∑k
j=0Hj

and the time variable τ =
∫ t
0 dt

′ c(t′) = ln(1 + t). With these transformations,
(21) become

dAk
dτ

= A2
k−1 −Ak (22)

with the initial conditions Ak(0) = δk,0. Substituting the traveling wave solution,
Ak(τ) → A(k−vτ), into (22) we find that A(x) satisfies the nonlinear difference-
differential equation

vA′(x) = A(x)−A2(x− 1) (23)

with the boundary conditions A(−∞) = 0 and A(∞) = 1. This nonlinear and
nonlocal equation appears insoluble; however, important physical features can
now be established analytically. For example, both extreme tails of A(x) are
exponential:

A(x) ∼
{
ex/v x→ −∞;
1− e−λx x→∞. (24)

Consequently, the distribution of both very large and very small (compared with
the typical) heights are exponential. The propagation velocity of the wave, which
characterizes the typical behavior, follows from the large-k tail. Substituting
1−A(x) ∼ e−λx into (23) gives a dispersion relation, i.e., a relation between the
velocity v and the decay constant λ:



Extremal Properties of Random Structures 221

v =
2eλ − 1
λ

. (25)

Out of the spectrum of possible v only one value, the maximal possible velocity,
is selected4. From (25) we find vmax ∼= 4.31107, corresponding to λ ∼= 0.768039.
This velocity satisfies (19) and is identical to the one obtained heuristically (20).
Numerical integration shows that a traveling wave is indeed approached (Fig. 4)
and the predicted propagation velocity is confirmed to within 0.1%. The choice of
the extremal velocity is the fundamental selection principle that applies to clas-
sical reaction-diffusion equations [39–43] and to numerous difference-differential
equations [44].

The traveling wave form of the height distribution implies that the height
— the elemental random variable — is highly concentrated near the average;
more precisely, each moment 〈(Hk − 〈Hk〉)n〉 is finite. Thus, accurate determi-
nation of the average is especially important. We already know that 〈Hk〉 ∼= vτ ;
a more sophisticated traveling wave technique yields the leading (logarithmic)
correction: 〈Hk〉 ∼= vτ − 3

2λ ln τ [38].
Similar analysis can also be performed for the minimal branch height [38].

The resulting velocity vmin ∼= 0.373365 is the smaller root of the transcendental
equation (19).

2.5 The Tallest and the Shortest

The tallest tree is defined as the one with largest height and similarly for the
shortest tree. The tallest and the shortest are merely the height leader and lag-
gard, respectively. The number of changes in the identity of these extremal trees
throughout the evolution process follows from the tails of the height distribution.

Consider the height distribution Hk(t) and the corresponding cumulative
distribution Uk = N

∑
j≥kHj(t). Both of these distributions have exponential

tails5, Uk(t) ∼ NHk(t) ∼ Ntλv−1 exp(−λk), as follows from the large-x tail of
the traveling wave (24). The criterion Ul = 1 yields the average height of the
tallest tree

l(t,N) � λ−1 ln[Ntλv−1]. (26)

Indeed, the height of the tallest tree saturates at a time scale of the order N
consistent with the saturation value lfinal(N) � v lnN . This is also an upper
bound for the total number of lead changes since the height of the tallest tree
grows by increments of unity. Similar to the leader, L(t ≈ 1) ∼ l(t ≈ 1) ∼ lnN .
However, at later times the rate of change is slower, d

dtL(t) ∼ t−1, as follows from
the flux criterion d

dtL = ∂
∂tUk

∣∣
k=l. The overall number of changes now grows

slower than in the leader case L(N) � ϕ lnN with ϕ ≤ vmax and consequently,
the survival probability of the first tallest tree decays algebraically
4 This actually happens for a wide class of initial conditions including all that vanish

for sufficiently small k.
5 The proportionality factor is tacitly ignored as it is irrelevant asymptotically. The

determination of its value requires a nonlinear analysis of the traveling wave.
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Fig. 5. Number of times m the tallest tree changes versus time t in a single realization
with N = 107.

S(N) ∼ N−ϕ (27)

with an apparently non-trivial exponent ϕ. Determination this constant is chal-
lenging since the number of lead changes in the early and the late time regimes
are comparable. Nevertheless, this heuristic approach successfully yields ex-
tremal statistics of an extremal tree characteristic, namely, the maximal branch
height. The irregular nature of the lead changing process is manifest when a
single realization is considered (Fig. 5).

Extremal statistics of the shortest tree follow from the cumulative dis-
tribution uk = N

∑
j≤kHj ∼ Nt−2 exp(k/v) and the criteria u� = 1 and

d
dtL = − ∂

∂tuk
∣∣
k=�. The size of the smallest tree thus grows according to

�(t,N) � v ln
t2

N
(28)

for times t N1/2 (at earlier times the shortest tree is a monomer). Even though
the shortest tree has a different growth law than the laggard (13), the time
dependent number of changes grows according to (14). Thus the total number
of changes L(N) � lnN and the survival probability S(N) ∼ N−1 are as in the
laggard case.

We conclude that leadership statistics generally exhibit logarithmic depen-
dences on the system size. However, they are not universal. Different behaviors
may characterize leaders and laggards and the behavior may depend on the
type of geometric feature, i.e., size or height. We have observed both linear and
quadratic growth with lnN . A third possibility, saturation at a finite value, is
found for random networks, as will be shown below.
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3 Random Graphs

Random graphs are fundamental in theoretical computer science [9,14,10,15].
They have been used to model social networks [21,22], and physical processes
such as percolation [45] and polymerization [16]. We discuss size statistics only.
The size distribution is derived and then used to obtain leader statistics.

3.1 The Size Distribution

A random graph is grown from an initially disconnected graph with N nodes.
Two nodes are then selected at random and are connected (Fig. 6). This process
occurs at a constant rate, that we set equal to unity without loss of generality.
This linking is repeated indefinitely until all N nodes form a single connected
component.

Let nk be the number of components of size k. The normalized density ck =
nk/N evolves according to the Smoluchowski equation

dck
dt

=
1
2

∑

i+j=k

ijcicj − k ck. (29)

The initial conditions are ck(0) = δk,1. In writing (29), the conservation law∑
k kck = 1 is employed. Equations (29) reflect that components are linked with

a rate proportional to the product of their sizes.
The generating function F (z, t) =

∑
k kck(t)e

kz, evolves according to ∂F
∂t =

(F−1)∂F∂z with the initial condition F (z, 0) = ez. Writing the derivatives through
Jacobians, ∂F

∂t = ∂(F,z)
∂(t,z) and ∂F

∂z = ∂(F,t)
∂(z,t) , and using the relation ∂z

∂t = ∂(z,F )
∂(t,F ) ,

the nonlinear equation for F (z, t) is recast into the linear equation ∂z
∂t = 1− F ,

from which we get6 z(t) = (1 − F )t + lnF . Exponentiating this equality gives
an implicit relation for the generating functions

F (z, t) e−tF (z,t) = ez−t. (30)

Fig. 6. A random graph. The dashed line indicates a newly-added link that joins
two randomly-selected nodes. The probability of joining together two components that
contain i and j nodes is proportional to ij.

6 The integration constant ln F follows from the initial condition F (z, 0) = ez.
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The Lagrange inversion formula7 conveniently yields the size distribution [47,48]

ck(t) =
(kt)k−1

k · k! e
−kt. (31)

The system undergoes a gelation transition at time tg = 1. At this point a giant
component arises that eventually engulfs the entire mass in the system. Close to
the gelation time, the size distribution attains the scaling behavior

ck(t) � k−5/2
∗ Φ(k/k∗), (32)

with the scaling function Φ(z) = 1√
2π
z−5/2e−z/2. The typical size diverges,

k∗ � (1− t)−2, as t → tg. Beyond the gelation point, there exists an infinite
sequence of transitions at times tk � k−1 lnN beyond which components of size
k disappear. At the last such transition time t1, the system consists of the giant
component and a few surviving monomers. The smallest component is always a
monomer and the laggard problem is trivial.

3.2 The Leader

The size of the giant component (the last emerging leader) follows from the
size distribution. Exactly at the gelation time, the large-size tail of the size
distribution is algebraic, ck(t = 1) ∼ k−5/2, so that the cumulative distribution is
uk ∼ Nk−3/2. The criterion ulw ∼ 1 gives the average size of the giant component
lw ∼ N2/3 [14] and the time at which it emerges is 1− tw ∼ N−1/3.

Consider the size of the leader, l(t,N), and the number of lead changes
L(t,N). At early times (t � 1), the behavior is the same as for random trees:
the size of the leader l(t,N), the number of lead changes L(t,N), as well as
the number of distinct leaders are all of the order lnN . The asymptotic time
regime in this case is t→ 1, as suggested by the size distribution. The tail of the
size distribution together with ul = 1 yield an implicit relation for the size of
the leader, l � 2(1− t)−2 lnN − 3(1− t)−2 ln l . Substituting the zeroth order
approximation l(0) = 2(1− t)−2 lnN into ln l and ignoring subdominant ln lnN
terms gives the leader size

l(t,N) � 2
(1− t)2 ln[N(1− t)3]. (33)

At early stages (t � 1) the leader size grows logarithmically with the system
size. Moreover, the leader size is proportional to the typical size but with a
logarithmic enhancement.

The rate of leadership change is estimated as in the random tree case and
we find d

dt L(t,N) = (1− t) l(t,N), so that the time dependence of the number
of lead changes is

7 The series v =
∑

n≥1
nn−1

n! un is a solution of the equation ve−v = u [46].
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L(t,N) � 2 lnN ln
1

1− t − 3
[
ln

1
1− t

]2

. (34)

It follows that the scaling form is

L(t,N) � (lnN)2 F (x) x =
ln 1

1−t
lnN

, (35)

with the scaling function F (x) = 2x − 3x2. This scaling function is related to
the leader size: l(t,N) � k∗ lnNf(x), with f(x) = d

dxF (x) = 2−6x. The scaling
behavior is obeyed until the giant component emerges, i.e., up to a time tw,
with 1− tw ∼ N−1/3. We neglected extremely slowly growing terms that are of
the order ln lnN/ lnN to obtain the scaling behavior. Thus, the approach to the
scaling behavior may be very slow.

The total number of lead changes, L(N) � 1
3 (lnN)2, is similar to the random

tree case8. Furthermore, the distribution of lead changes is Poissonian, as in (10),
and the survival probability decays according to (12).

Random trees and random graphs show very different size characteristics.
Gelation occurs in one case but not in the other. Nevertheless, leadership statis-
tics in these two systems are remarkably similar. In both cases, the total num-
ber of lead changes grows as L(N) ∼ (lnN)2. Moreover, the seemingly different
scaling variables underlying (8) and (35) can be both related to the typical size
x = ln k∗/ lnN .

4 Random Networks

In the case of sequentially growing networks, the basic quantity is the degree
distribution Nk, defined as the number of nodes of degree k when the network
contains N total nodes. In this section, we investigate extremal properties of the
degree distribution. We are again interested in the leader, namely, the node with
the highest degree and its associated statistical properties.

4.1 Identity of the Leader

We characterize the J th node that enters the network as having an index J
(Fig. 7). To start with an unambiguous leader node, we initialize the system to
have N = 3 nodes, with the initial leader having degree 2 (and index 1) and the
other two nodes having degree 1. A new leader arises when its degree exceeds
that of the current leader.

For a constant attachment rate (Ak = 1), the average index of the leader
grows algebraically, Jlead(N) ∼ Nψ, with ψ ≈ 0.41. The leader is typically
an early node (since ψ < 1), but not necessarily one of the very earliest. For
example, a node with index greater than 100 has a probability of approximately
8 The relation 1− tw ∼ N−1/3 shows that x ≤ 1/3, and the prefactor is obtained from

the scaling function: A = F (1/3) = 1/3.
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Fig. 7. A random network. The network is grown by adding links sequentially. A
new node has a single outgoing link that joins to an earlier node of degree k with an
attachment rate Ak. Each node is labeled by its index J .

10−2 of being the leader in a graph of N = 105 nodes. Thus the order of node
creation plays a significant but not deterministic role in the identity of the leader
node for constant attachment rate — there is partial egalitarianism.

We can understand this behavior analytically from the joint index-degree
distribution. Let Ck(J,N) be the average number of nodes of index J and degree
k. For constant attachment rate, this joint distribution obeys the rate equation

∂Ck
∂N

=
∂Ck
∂J

+
Ck−1 − Ck

N
+ δk1δ(N − J). (36)

This is a slight generalization of the rate equation for the degree distribution
itself [49]. The new feature is the first term on the right that accounts for node
“aging”.

The homogeneous form of this equation implies a self-similar solution. Thus,
we seek a solution as a function of the single variable J/N rather than two
separate variables [49]

Ck(J,N) = fk(x) with x =
J

N
. (37)

This turns (36) into the ordinary differential equation

−x dfk
dx

= fk−1 − fk. (38)

We have omitted the delta function term, since it merely provides the boundary
condition ck(J = N,N) = δk,1, or fk(1) = δk,1. The solution is simply the
Poisson distribution in the variable lnx, i.e.,

Ck(J,N) =
J

N

| ln(J/N)|k−1

(k − 1)!
, (39)

from which the average index of a node of degree k is

Jk(N) =

∑
1≤J≤N J Ck(J,N)

∑
1≤J≤N Ck(J,N)

= N

(
2
3

)k
. (40)
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Thus the index of the leader is Jlead(N) = N(2/3)kmax . The maximum degree
is estimated from the extreme value criterion

∑
k≥kmax

Nk(N) ≈ 1 and using
Nk(N) = N/2k [49] gives kmax ∼ lnN/ ln 2. Therefore [50]

Jlead(N) ∼ Nψ, with ψ = 2− ln 3
ln 2

∼= 0.415 037,

in excellent agreement with numerical results.
For the linear attachment rate, Ak = k, numerical simulations indicate that

a rich gets richer phenomenon arises, as the average index of the leader Jlead(N)
saturates to a finite value of approximately 3.4 as N → ∞. With probability
≈ 0.9, the leader is among the 10 earliest nodes, while the probability ≈ 0.99
the leader is among the 30 earliest nodes [50]. In general, we find similar behavior
for the more general case of the shifted linear attachment rate Ak = k + λ.

We can understand these results analytically through the joint index-degree
distribution. For the linear attachment rate one has [49]

Ck(J,N) =

√
J

N

(
1−

√
J

N

)k−1

, (41)

from which Jk(N) = 12N/[(k + 3)(k + 4)]. Since Nk(N) � 4N/k3 for linear at-
tachment [51,49], the extreme statistics criterion now gives kmax ∼ N1/2. There-
fore Jlead(N) � 12N/k2

max = O(1) indeed saturates to a finite value. Thus the
leader is one of the first few nodes in the network.

4.2 Number of Lead Changes

In contrast with random trees and random graphs, the average number of lead
changes L(N) grows only logarithmically in N for both the attachment rates
Ak = 1 and Ak = k. While the average number of lead changes appears to be
universal, there is a significant difference in the distribution of the number of lead
changes, Pn(N), at fixed N . For Ak = 1, this distribution is sharply localized,
while for Ak = k, Pn(N) has a significant large-n tail. This tail stems from
repeated lead changes among the two leading nodes. Related to lead changes is
the number of distinct nodes that enjoy the lead over the history of the network.
Simulations indicate that this quantity also grows logarithmically in N .

This logarithmic behavior can be easily understood for the attachment rate
Ak = 1. Here the number of lead changes cannot exceed an upper bound given
by the maximal degree kmax ∼ lnN/ ln 2. To establish the logarithmic growth
for the general attachment rate Ak = k+ λ, we first note that when a new node
is added, the lead changes if the leadership is currently shared between two (or
more) nodes and the new node attaches to a co-leader. The number of co-leader
nodes (with degree k = kmax) is N/k3+λ

max , while the probability of attaching to a
co-leader is kmax/N . Thus the average number of lead changes satisfies

dL(N)
dN

∼ kmax

N

N

k3+λ
max

. (42)
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Since kmax ∼ N1/(2+λ), (42) reduces to dL/dN ∼ N−1 and thus gives the
logarithmic growth L(N) ∼ lnN .

4.3 Fate of The First Leader

We now turn to the probability that the first leader retains the lead throughout
the network growth. For the linear attachment rate Ak = k + λ (rich get richer
systems), the initial leader has a finite chance to remain in the lead forever. How-
ever, for the egalitarian attachment rate Ak = 1, the initial leader is eventually
replaced by another leader. Here, the probability that the initial leader retains
the lead decays very slowly in time with an unusual decay law.

To understand the fate of the initial leader, we need to understand the degree
distribution of the first node. We can straightforwardly determine this degree
distribution analytically for the constant and linear attachment rates [50,52].
Let P (k,N) be the probability that the first node has degree k in a network of
N links9. For Ak = k, this probability obeys [50]

P (k,N + 1) =
k − 1
2N

P (k − 1, N) +
2N − k

2N
P (k,N). (43)

The first term on the right accounts for the case that the earliest node has
degree k − 1. Then a new node attaches to it with probability (k − 1)/2N ,
thereby increasing the probability for the node to have degree k. Conversely,
with probability (2N − k)/2N a new node does not attach to the earliest node,
thereby giving the second contribution to P (k,N + 1).

The solution to (43) for the “dimer” initial condition ◦ ◦ is

P (k,N) =
1

22N−k−1

(2N − k − 1)!
(N − k)! (N − 1)!

. (44)

For N →∞, this simplifies to the Gaussian distribution

P (k,N) � 1√
πN

e−k
2/4N (45)

for finite values of the scaling variable k/N1/2. Thus the typical degree of the
first node is of the order of N1/2; this is the same scaling behavior as the degree
of the leader node. For the trimer initial condition (which we typically used in
simulations) we obtain the degree distribution of the first node as a series of ratios
of gamma functions in which P (k,N) has an e−k

2/4N Gaussian tail, independent
of the initial condition. The degree of the first node also approximates that of
the leader node more and more closely as the degree of the first node in the
initial state is increased [53].
9 The normalized attachment probability is Ak/A, with A =

∑
AjNj . For the linear

attachment rate, A is twice the total number of links. Hence formulae are neater if
we denote by N the total number of links.
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Fig. 8. The probability that the first node leads throughout the evolution obtained
from 105 realizations of up to size N = 107 for Ak = k (upper), and up to N = 108 for
Ak = 1 (lower).

Although P (k,N) contains all information about the degree of the first node,
the behavior of its moments 〈ka〉N =

∑
kaP (k,N) is simpler to appreciate. To

determine these moments, it is more convenient to construct their governing
recursion relations directly, rather than to calculate them from P (k,N). Using
(43), the average degree of the first node satisfies the recursion relation 〈k〉N+1 =
〈k〉N

(
1 + 1

2N

)
whose solution is

〈k〉N = Λ
Γ

(
N + 1

2

)

Γ
( 1

2

)
Γ (N)

� Λ√
π
N1/2 . (46)

The prefactor Λ depends on the initial conditions, with Λ = 2, 8/3, 16/5, . . . for
the dimer, trimer, tetramer, etc., initial conditions.

This multiplicative dependence on the initial conditions means that the first
few growth steps substantially affect the average degree of the first node. For
example, for the dimer initial condition, the average degree of the first node is,
asymptotically, 〈k〉N � 2

√
N/π. However, if the second link attaches to the first

node, an effective trimer initial condition arises and 〈k〉N � (8/3)
√
N/π. Thus,

small initial perturbations lead to huge differences in the degree of the first node.
An intriguing manifestation of the rich get richer phenomenon is the behavior

of the survival probability S(N) that the first node leads throughout the growth
up to size N (Fig. 8). For the linear attachment rate, S(N) saturates to a finite
non-zero value of approximately 0.277 as N → ∞; saturation also occurs for
the general attachment rate Ak = k+λ. We conclude that for popularity-driven
systems, the rich get richer holds in a strong form—the lead never changes with
a positive probability.
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For constant attachment rate, S(N) decays to zero as N → ∞, but the
asymptotic behavior is not apparent even when N = 108. A power law S(N) ∼
N−φ is a reasonable fit, but the local exponent is still slowly decreasing at
N ≈ 108 where it has reached φ(N) ≈ 0.18. To understand the slow approach
to asymptotic behavior, we study the degree distribution of the first node. This
quantity satisfies the recursion relation

P (k,N) =
1
N
P (k − 1, N − 1) +

N − 1
N

P (k,N − 1) (47)

which reduces to the convection-diffusion equation
(

∂

∂ lnN
+
∂

∂k

)
P =

1
2
∂2P

∂k2 (48)

in the continuum limit. The solution is a Gaussian

P (k,N) � 1√
2π lnN

exp
[
− (k − lnN)2

2 lnN

]
. (49)

Therefore the degree of the first node grows as lnN , with fluctuations of the order
of
√

lnN . On the other hand, the maximal degree grows faster, as lnN/ ln 2, with
negligible fluctuations.

We now estimate the large-N behavior of S(N) as
∑
k≥kmax

P (k,N). This
approximation gives

S(N) ∼
∫ ∞

v lnN

dk√
lnN

exp
[
− (k − lnN)2

2 lnN

]
∼ N−φ (lnN)−1/2 , (50)

with φ = [(ln 2)−1 − 1]2/2 ∼= 0.097989. The logarithmic factor leads to a very
slow approach to asymptotic behavior.

The above estimate is based on a Gaussian approximate for P (k,N) which
is not accurate for |k − lnN |  √

lnN . However, we can determine P (k,N)
exactly because its defining recursion formula, (47), is closely related to the
Stirling numbers

[
N
k

]
of the first kind [54]. For the dimer initial condition, the

solution reads P (k,N) =
[
N
k

]
/N !. The corresponding generating function is [54]

SN (x) =
N∑

k=1

P (k,N)xk =
x(x+ 1) . . . (x+N − 1)

N !
. (51)

Using the Cauchy theorem, we express P (k,N) in terms of the contour integral
SN (x)/xk+1. When N → ∞, this contour integral is easily computed using the
saddle point technique. Finally, we arrive at (50) with the same logarithmic
prefactor but with the slightly smaller exact transcendental exponent φ = 1 −
1+ln ln 2

ln 2
∼= 0.08607. The remarkably small exponent value and the logarithmic

correction are the reasons why simulations with N = 108 observed an exponent
that was more that twice larger.
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5 Summary and Discussion

Extremal properties provide an important statistical characterization of random
structures and these properties yield many insights and surprises. Generally,
extremes involve logarithmic dependences on system size. The practical con-
sequences are numerous: slow convergence to asymptotic behavior, significant
statistical fluctuations, erratic changes in extremal characteristics, and sensitive
dependence on the initial conditions. Such behavior is consistent with our expe-
rience. For example, changes in athletic records are rare and unpredictable. As
another example, the number of changes in the composition of the bellwether
Dow Jones stock index (the 30 largest companies) ranged from a high of 11 in
the 1990’s to a low of 0 in the 1950’s [55].

Leadership statistics of random graphs and random trees are quite similar:
lead changes are infrequent; their total number increases logarithmically with
the system size. The time-dependent number of lead changes approaches a self-
similar form. The convergence to the asymptotic behavior is much slower for ex-
tremal statistics compared with size statistics because of the presence of various
logarithmic dependences. Hence, the asymptotic behavior is difficult to detect
in practice, especially for random graphs.

The most elementary leadership characteristic is the overall number of lead
changes as a function of system size. This quantity can be measured simply by
counting the number of changes until the process ends, making no reference to
time. We have seen that introducing the time variable and treating the merger
process dynamically not only produces this quantity, but also reveals an impor-
tant self-similar behavior throughout the growth process.

Lead changes are also rare in popularity-driven network growth processes,
where leadership is restricted to the earliest nodes. With finite probability, the
first node remains the leader throughout the evolution. For growth with no
popularity bias, leadership is shared among a somewhat larger cadre of nodes.
As a consequence, the average index of the leader node grows algebraically with
the network size. The possibility of sharing the lead among a larger subset of
nodes gives a rich dynamics in which the probability that the first node retains
the lead decays algebraically with the system size.

Extremal height properties of random trees can be obtained by analyzing the
underlying nonlinear evolution equations. The cumulative distributions of tree
heights approach a traveling wave form and the mean values grow logarithmically
with the tree size. The corresponding growth coefficients can be obtained using
either an elementary probabilistic argument or using an extremum selection
criteria on the traveling wave. The same formalism used to analyze the leader and
the laggard extends naturally to extremal statistics of extremal characteristics
such as the heights of the tallest and the shortest trees.

To obtain leader or laggard characteristics, we employed the scaling behav-
ior of the size distribution outside the scaling regime, namely, at sizes much
larger than the typical size where, at least formally, statistical fluctuations can
no longer be ignored. Nevertheless, the size dependences for these various lead-
ership statistics appear to be asymptotically exact. Further analysis is needed
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to illuminate the role of statistical fluctuations, for example, by characterizing
corrections to the leading behavior [56–58].
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Rémi Monasson
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Abstract. Backtrack search algorithms are procedures capable of deciding whether a
decision problem has a solution or not through a sequence of trials and errors. Analysis
of the performances of these procedures is a long-standing open problem in theoretical
computer science. I present some statistical physics ideas and techniques to attack this
problem. The approach is illustrated on the colouring of random graphs, and some
current limitations and perspectives are presented.

1 Introduction

1.1 Why Studying Backtrack Algorithms?

Many computational tasks e.g. constrained satisfaction, scheduling, ... amount
to a search for the optimum of a cost function which depends upon a set of
variables taking values in a huge space of possible configurations. Finding the
true optimum with certainty is not easy from an algorithmic point of view and
can be done through ’clever’ exhaustive search only. Indeed, as stated by D.
Knuth in 1975,

“the majority of all combinatorial computing applications can apparently be
handled only by what amounts to an exhaustive search through all possibilities.
Such searches can readily be performed by using a well-known ”depth-first” pro-
cedure (...) called backtracking” [1].

Three decades later, Knuth’s statement still holds. It is a fundamental con-
jecture of theoretical computer science that exhaustive search is essentially the
only way to solve many combinatorial problems, called NP-complete [2]. For such
problems, backtracking is among the most efficient solving procedures, and often
the only one. Unfortunately, the running time of backtrack-based algorithms is
hardly predictable, as explained by the same author:

“Sometimes a backtrack program will run to completion in less than a second,
while other applications of backtracking seem to go on forever. The author once
waited all night for the output from such a program, only to discover that the
answers would not be forthcoming for about 106 centuries. A ”slight increase”
in one of the parameters of a backtrack routine might slow down the total run-
ning time by a factor of a thousand; conversely, a ”minor improvement” to the
algorithm might cause a hundredfold improvement in speed; and a sophisticated
”major improvement” might actually make the program ten times slower” [1].

R. Monasson, On the Analysis of Backtrack Procedures for the Colouring of Random Graphs, Lect.
Notes Phys. 650, 235–254 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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The study of backtrack algorithms has a long and rich story in theoretical
computer science [3]. Recently, the use of out-of-equilibrium ideas stemming from
statistical physics has led to some improvement in our understanding of when
and why a backtrack procedure is very fast, or slow to solve computational
problems [4]. The purpose of this article is to illustrate this approach on the
colouring problem, discuss its limitations, and propose some ways to circumvent
those.

1.2 The Colouring Problems and Some Definitions

An example of combinatorial problem that can be solved by a backtrack proce-
dure is the colouring of graphs (COL). An input of the K-COL decision problem
consists in a graph G. The problem consists in finding a mapping from the set of
vertices to the set ofK colours such that no two neighbouring vertices (connected
by an edge) have the same colour, or proving there exists no such mapping. K-
COL is a NP-complete problem for any K ≥ 3 [2], and we choose K = 3 in
most of what follows. The operation of the backtrack procedure, called Davis-
Putnam-Logemann-Loveland (DPLL) [5] on an input of the 3-COL problem is
illustrated in Fig. 1.

In order to study in a quantitative way the performances of DPLL, we need
first to define in a precise way the notion of running time, and then the features
of the input graphs we want to colour.

Running Time and Search Tree

It is convenient to represent the history of the search process followed by DPLL,
that is, the sequence of trials and errors by a search tree. Examples of search trees
are given in Fig. 2. Nodes in the tree are attached to assignment of variables,
while edges represent logical consequences (elimination of satisfied constraints,
simplification of other constraints) resulting from these assignments. A good
computer-independent measure of the complexity of resolution is the size of the
search tree generated by DPLL. This search tree varies with the input of the
problem under consideration i.e. the graph to be coloured, and the sequence of
assignments carried out by the search procedure.

Random Graphs

In spite of being NP-complete, 3-COL is not always hard. Deciding whether a
given graph is 3-colourable or not may sometimes be very easy. For instance, it
is immediate to recognise that a square lattice is 3-colourable, irrespectively of
its size (number of nodes), while a complete graph with 4 vertices (or more) is
not. To obtain a reliable estimate of the performances of DPLL on 3-COL, we
want to discard such instances.

A possibility is to estimate resolution complexity for some underlying proba-
bility distribution of instances. This ‘average-case’ behaviour depends, of course,
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Fig. 1. Two examples which demonstrate how the DPLL algorithm acts onto a un-
colourable (left side) and an colourable (right side) graph. The figure illustrates how
the search tree grows with the operation of the algorithm. Available colours at each
step are denoted by the patterns of the filled circles attached to vertices. When a ver-
tex is coloured, it is removed from the graph, together with all its attached edges. In
addition, the chosen colour is removed from the neighbours’ sets of available colours.
On the right side of the figure, a colourable graph is coloured by the algorithm. No
contradiction is encountered, and the algorithm finds a solution without backtracking.
On the left side, the algorithm tries to colour an uncolourable graph. When it first hits
a contradiction (step 2) i.e. when two 1-colour vertices connected by an edge are left
with the same available colour, the algorithm backtracks to the last-coloured vertex,
and tries to colour it with the second available colour. When a contradiction is hit
again, the algorithm terminates. Note, that in principle, it could backtrack to the first-
coloured node, and try other colour options. However, due to colour gauge symmetry,
this will not yield a solution.

on the input distribution and on the resolution algorithm considered [6,7]. Such
distributions are usually unrealistic compared to structured instances from the
real world, but are simple enough to allow for some analytical treatment. A
popular input distribution for 3-COL are random graphs G à la Erdös-Renỳı
i.e. drawn with uniform probability among all the graphs having N vertices and
E edges. The limit of interest is N,E → ∞ at fixed ratio c = 2E/N of edges
per vertex [8–10]. Random 3-COL exhibits a phase transition phenomenon. For
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Fig. 2. Types of search trees generated by the DPLL solving procedure on 3-COL.
A. simple branch: the algorithm finds easily a colouring without ever backtracking. B.
dense tree: in the absence of proper colourings, DPLL builds a tree, including many
branches ending with contradictory leaves, before stopping. C. mixed case, branch +
tree: if many contradictions arise before reaching a solution, the resulting search tree
can be decomposed into a single branch followed by a dense tree.

small values of the control parameter c, and for large input sizes, the answer to
the decision problem (existence of a proper colouring) is almost surely yes. This
holds as long as c remains smaller than a critical value cS � 4.7 called threshold,
see [11] for a recent estimate of cS with statistical mechanics techniques. Above
the threshold, the answer is no with high probability.

1.3 Average Performances of DPLL. An Overview

A rigorous framework has been developed over the past years in theoretical
computer science to understand the performances of DPLL in the yes region, at
small enough ratios. There, decision is easily reached through a search tree as
in Fig. 2A. The complexity of search is linear in the graph size, and essentially
no backtracking takes place. This property allows for a rigorous analysis. It
enormously simplifies the search by turning it into a Markovian process where
a node in the graph is never seen twice, and the quenched character of the
random graph to be coloured is not essential. The underlying structure (graph)
is dynamically annealed. An informal account of the analysis of the operation of
DPLL at small graph degree is presented in Sect. 2.

The situation is totally different above the threshold cS . Proving the absence
of solution requires the building up of a search tree like the one of Fig. 2B3.
Though it is proven that the size of the search tree is exponentially large (in
N) [12], not much more is known. In particular, no quantitative characterisation
3 Massive backtracking is also present slightly below threshold where proper colourings

are found at the price of intense computational effort, see search tree in Fig. 2C.
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of this tree has been obtained by theoretical computer scientists so far. Due to
massive backtracking, DPLL attempts to colour a node many different times at
different stages of the search process. Furthermore, the Markovian character is
lost: partial colourings of the graph, associated to nodes in the search tree, have
to be stored to allow for the search to resume after a contradiction terminates a
branch.

The understanding of DPLL operation in presence of massive backtracking
is a formidable task from a probabilistic point of view. Recently, studies inspired
from out-of-equilibrium statistical mechanics have permitted to tackle this prob-
lem to some extent. We present in Sect. 3 some of the ideas and results obtained
along these lines. Finally, criticisms and remarks are given in Conclusion.

2 Colouring in the Absence of Backtracking

We first briefly review the ’rigorous’ analysis of DPLL acting on an random
input of 3-COL with small average vertex degree.

2.1 Main Features of the Search Heuristic

The action of the colouring procedure, illustrated in Fig. 1, is described as fol-
lows:

– List of available colors: while running, the algorithm maintains for each un-
coloured vertices, a list of available colours, which consists of all the colours
that can be assigned to this vertex. A node with j(= 1, 2, 3) available colors
is called j–colour node.

– List-Updating: to ensure that no adjacent vertices have the same colour,
whenever a vertex is assigned a colour, this colour is removed from the lists
(if present) attached to each of the uncoloured neighbours.

– Colouring Order: most constrained vertices i.e. with the least number of
available colours are coloured first. At each step, a vertex is chosen among
the most constrained vertices, and a colour is selected from the list of available
colours. Both choices are done according to some heuristic rule, which can
be unbiased (no preference is made between colours), or biased (following a
hierarchy between colours), see next section.

– Contradictions and Backtracking: a contradiction occurs as soon as one of
the lists becomes empty. Then, the algorithm backtracks to the most recently
chosen vertex, which have more than one available colour (the closest node
in the search tree - see definition below).

– Termination Condition: the algorithm stops when all vertices are coloured,
or when all colouring possibilities have been tried.

Let us call Greedy heuristic the incomplete version of the above algo-
rithm, obtained when the algorithm stops if a colouring is found (and outputs
“Colourable”), or just after the first contradiction instead of backtracking (and



240 R. Monasson

outputs “Don’t know if colourable or not”). In contrast to the algorithm with
backtracking, the Greedy heuristic is not able to prove the absence of solution,
but is amenable to rigorous analysis [13,9]. In the simplest case, vertices and
colours are chosen purely randomly without any bias between colours (Colour-
ing Order step described above). This Greedy heuristic enjoys two key properties.
The first one is a statistical invariance: throughout the execution of the algo-
rithm, the uncoloured part of the graph is uniformly randomly distributed, with
an average vertex degree equal to c(1− t) where t is the fraction of coloured ver-
tices. The second property is colour symmetry: the search heuristic is symmetric
with respect to the different colours, and the initial conditions are symmetric as
well. Hence, the evolution of the algorithm can be monitored by tracking of the
three numbers Nj(T ) of j-colour nodes (j = 1, 2, 3) without distinction between
the colours available to each of these nodes.

2.2 Dynamics, Concentration, and Fluctuations of Node Populations

The evolution of these numbers in the course of the colouring was analysed
by Achlioptas and Molloy [13]. evolution equations for the three populations of
vertices read,

N3(T + 1) = N3(T )− w2(T ),
N2(T + 1) = N2(T ) + w2(T )− w1(T )− δN1(T ),
N1(T + 1) = N1(T ) + w1(T )− (1− δN1(T )), (1)

where δN1(T ) = 1 if N1(T ) = 0 (a 2-colour vertex is coloured) and δN1(T ) =
0 if N1(T ) �= 0 (a 1-colour vertex is coloured). Quantities w2(T ) and w1(T )
are the ‘flows’ of vertices from N3(T ) to N2(T ), and from N2(T ) to N1(T )
respectively (Fig. 3). These are stochastic numbers depending on the graph under
consideration and on the random choices made by the Greedy heuristic.

As a result of the additivity of (1), some concentration phenomenon takes
place in the large size limit. The numbers of j–colour nodes do not fluctuate too
much,

Nj(T ) = nj(T/N) N + o(N). (2)

where the nj ’s are the population densities averaged over the graph (quenched
disorder) and the choices of colours (“thermal” disorder). In other words, the
densities of j–colour nodes are self-averaging quantities and we shall attempt
at calculating their mean values only. Note that, in order to prevent the occur-
rence of contradictions, the number of 1-colour nodes must remain small and the
density n1 has to vanish.

Formula (1) also illustrates another essential feature of the dynamics of pop-
ulations. Two time scales are at play. The short time scale, of the order of
the unity, corresponds to the fast variations of the numbers of clauses Nj(T )
(j = 1, 2, 3). When time increases from T to T +O(1) (with respect to the size
N), all Nj ’s vary by O(1) amounts. Consequently, the densities nj of nodes, that
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Fig. 3. Schematic view of the dynamics of the Greedy heuristic. Nodes are sorted
into three recipients according to the number of available colours. Each time a node
is coloured by DPLL, populations N1, N2, N3 are modified, resulting in a dynamics
of the recipients populations (lines with arrows). Bold lines represent the reduction
of 3-nodes into 2-nodes, or 2-nodes into 1-nodes with flows denoted by w2, w1 respec-
tively. A solution is found when all recipients are empty. The level of the rightmost
recipient coincides with the number of 1-colour nodes. If this level is low (i.e. O(1)),
the probability that two 1-colour nodes (with the same available colour) are adjacent
on the graph is vanishingly small. When the level is high (i.e. O(

√
N)), contradictions

will occur with high probability. Flow e1 (respectively e2) is equal to unity if the node
coloured by the Greedy heuristic is chosen from the 1-colour (resp. 2-colour) recipient.

is, their numbers divided by N , are changed by O(1/N) only. The densities njs
evolve on a long time scale of the order of N and depend on the reduced time
t = T/N only.

Due to the concentration phenomenon underlined above, the densities nj(t)
will evolve in a deterministic way with the reduced time t. On the short time
scale, the relative populations ∆Nj(T ) = Nj(T ) − N nj(T/N) fluctuate (with
amplitude� N) and are stochastic variables. As said above the evolution process
for these relative numbers of clauses is Markovian and the probability rates
(master equation) are functions of slow variables only, i.e. of the reduced time t
and of the densities n2 and n3. On intermediary time scales, much larger than
unity and much smaller than N , the ∆Njs reach some stationary distribution
that depend upon the slow variables.

To sum up, the dynamical evolution of the clause populations may be seen as
a slow and deterministic evolution of the j–colour nodes densities to which are
superimposed fast, small fluctuations. The equilibrium distribution of the latter
adiabatically follows the slow trajectory. This scenario is sketched in Fig. 4.

2.3 Resolution Trajectories and Percolation

Due to the statistical invariance property, the average flows of vertices w2(T )
and w1(T ) can be easily calculated. Each time a node is coloured, its 3-colour
neighbors are turned into 2-colour vertices. The average number of neighbours
is c(1 − t), and the probability that a neighbour is a 3-colour nodes (prior to
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reduced time t=T/N

∆

∆T = t’N +   T

N = n’N +   N
nodes density ni

i i i

i

Fig. 4. Deterministic versus stochastic dynamics of the nodes population Ni as a
function of the number of steps T of the algorithm. On the slow time scale (reduced
time t = T/N), the density ni = Ni/N of (2- or 3-colour) nodes varies smoothly
according to a deterministic law. Blowing up of the dynamics around some point t′, n′

i

shows the existence of small and fast fluctuations around this trajectory. Fluctuations
are stochastic: their distribution depends upon the slow variables t′, n′

i.

coloring) equals N3(T )/(N(1 − t)), leading to w2(T ) = cN3(T )/N . A similar
argument gives w1(T ) = 2 cN2(T )/(3N). Thus, the evolution equations for the
densities are

dn3(t)
dt

= −c n3(t),
dn2(t)
dt

= c n3(t)− 1. (3)

The solution of these differential equations, with initial conditions n3(0) = 1,
n2(0) = 0, is n3(t) = e−c t , n2(t) = 1− t−e−c t . Eqs. (3) were obtained under
the assumption that n2(t) > 0 and hold until time t = τ defined through,

1− τ = e−c τ , (4)

at which the density n2 of 2-colour nodes vanishes. For t > τ , 2-colour vertices do
not accumulate anymore. They are coloured as soon as they are created. 1-colour
vertices are almost never created, and the vertices coloured by the algorithm are
either 2-, or 3-colour vertices. Thus, when τ < t < 1, n2(t) = 0, and n3(t) = 1−t
decreases to zero. A proper colouring is found at t = 1 i.e. when all nodes have
been coloured, see trajectory in Fig. 5. Notice that, if c < 1, τ = 0 and n2
vanishes at all times.

The interpretation of the change taking place at time τ is simple. Let us first
assume that c < 1, then τ = 0. The random graph to be coloured is essentially
made of small trees4. Colouring of such a tree is straightforwardly done by the
Greedy procedure. Since the graph is essentially a tree5, colouring starts from one
4 There may also exist small odd cycles e.g. triangles easily colourable with 3 colours.
5 The presence of unicycle does not affect the property of being 3-colorable.



Analysis of a Backtrack Algorithm for the Colouring of Random Graphs 243

0 0.1 0.2 0.3 0.4
n2

0

0.2

0.4

0.6

0.8

1

n3

c=20
c=10

c=7

increasing
time c=3

Fig. 5. Trajectories of dominant search branches generated by DPLL in the un-
colourable phase (c > c3 � 4.7) compared to a search trajectory in the easy colourable
phase (c < cL � 3.85). Horizontal and vertical axis represent the densities n2 and n3

of 2- and 3-colour nodes respectively. Trajectories are depicted by solid curves, and
the arrows indicate the direction of motion (increasing depth of the search tree); they
originate from the left top corner, with coordinates (n2 = 0, n3 = 1), since all nodes
in the initial graph are 3-colour nodes. Dots at the end of the uncolourable trajecto-
ries (c = 7, 10, 20) symbolise the halt point at which condition n2 < 3 ln 2/c ceases
to be fulfilled, and the search tree stops growing. Note that as the initial connectivity
increases, the trajectories halt at earlier stage, implying the early appearance of con-
tradictions as the problem becomes over-constrained (large connectivity values). The
colourable trajectory (shown here for c = 3) represents the under-constrained region
of the problem, where the very first search branch is able to find a proper colouring
(bottom left corner with coordinates (n2 = 0, n3 = 0)).

node and then proceeds, branch after branch. The lists of available colours of not-
yet-coloured nodes contain at least two colours. During this process, n3 decreases
linearly with time T , while N2(T ) is bounded from above by the number of nodes
in the tree. Hence the density of 2-colour nodes vanishes. Assume now that
c > 1. A randomly drawn graph is now made of a giant percolating component
including a fraction of the vertices equal to τ defined in eqn (4), while the fraction
of remaining nodes, 1− τ , almost surely belong to small trees. During the initial
stage of the colouring process e.g. 1 � T � N , the probability that a node
belonging to the giant component is chosen by the Greedy heuristic tends to
one. On the average, the number of its neighbours equals c, and this coincides
with the number N2 of 2-colour nodes created. Next, only one of these nodes
is coloured, resulting in an average net creation rate of c − 1 2-colour nodes.
Hence N2 initially grows, and the density n2 becomes finite. This goes on until
all the nodes in the percolating component have been assigned some colour i.e.
up to time τ . Later on, the Greedy algorithm is left with the colouring of the
remaining small trees (resolution trajectory at zero 2-colour density in Fig. 5).
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Motion equations (3) are valid as long as no contradiction occurs. The number
of 1-colour vertices must remain small throughout the execution of the algorithm.
Clearly, 1-colour nodes are created slowly enough to be coloured ans eliminated,
and do not accumulate provided that w1(t) < 1. For c < cL ≈ 3.847, this
condition is never violated, and the probability that the algorithm succeeds in
finding an appropriate colouring without backtracking is positive 6. For cL < c <
cS , the condition is violated at t = td(c) which depends on c, and 1-colour vertices
start to accumulate. As a result, the probability for contradictions becomes large,
and backtracking enters into play with a search tree sketched in Fig. 2C.

3 Colouring in the Presence of Massive Backtracking

The analysis of the DPLL algorithm in presence of backtracking was initiated on
the random SAT problem. The case of 3-COL is qualitatively similar. Hereafter,
we study the average complexity of showing that a random graph G with average
degree c is not 3-colourable (as happens with high probability if c > cS).

3.1 From Depth-First to Breadth-First Search:
The Markovian Evolution Matrix

The probabilistic analysis of DPLL in the uncolourable regime appears to be a
formidable task since the search tree of Fig. 2B is the output of a complex,
sequential process: nodes and edges are added by DPLL through successive
descents and backtrackings (depth-first search). We have imagined a different,
breadth-first building up of the refutation tree, which results in the same com-
plete tree but can be mathematically analysed. In our imaginary process, the
tree grows in parallel, layer after layer (Fig. 6). At time T = 0, the tree reduces
to a root node, to which is attached the initial colouring E consisting in assign-
ing to one randomly chosen vertex, say vertex number 1, a colour, say, Red, and
an attached outgoing edge. Nothing else is known at the beginning of the search
process. We suppose that the graph G is connected, and not 3-colourable. At
time T , that is, after having coloured T vertices of the graphs attached to each
branch, the tree is made of B(T ) (≤ 2T ) branches, each one carrying a partial
colouring. At next time step T → T + 1, a new layer is added by colouring,
according to DPLL heuristic, one more node along every branch. As a result,
a branch may keep growing through 1-colour node colouring, get hit by a con-
tradiction and die out, or split if the colouring proceeds through 2-colour node
colouring.

This parallel growth process is Markovian, and can be encoded in an
instance–dependent evolution operator H. A detailed definition and construc-
tion of H for the SAT problem is presented in [15]. We hereafter expose the
main steps:
6 See ref. [14] for a recent study of the occurrence of exponentially hard resolutions

with massive backtracking in this range of connectivities.
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T+1

T

0

depth

empty assignment of variables

c c

search tree at depth T-1

Fig. 6. Imaginary, parallel growth process of a search tree proving uncolourability
used in the theoretical analysis. Colouring proceeds along the DPLL rule, but branches
evolve in parallel. T denotes the depth in the tree, that is the number of nodes coloured
by DPLL along each branch. At depth T , one node is chosen on each branch among
1-colour nodes (grey circles not represented in Fig. 2), or 2-, 3-colour nodes (splitting,
black circles as in Fig. 2). If a contradiction occurs, the branch gets marked with C
and dies out. The growth of the tree proceeds until all branches carry C leaves. The
resulting tree is identical to the one built through the usual, sequential operation of
DPLL.

– A 4N dimensional–vector space V is introduced. Each vector |S〉 in the
spanning basis is in one–to–one correspondence with a partial colouring
S = (s1, s2, . . . , sN ) of the N vertices, where si = R, G, B if vertex i is
coloured with colour R, G, B respectively, or si = U (Unknown) if vertex i
has not been assigned any colour yet.

– Let S be a partial colouring for the graph under consideration with sj = U
for some vertex j. Then S(j,x) is the partial colouring obtained from S by
assigning colour x(= R,G,B) to vertex j. Call hn(j|S) and hv(x|S, j) the
probabilities that the Greedy heuristic respectively chooses vertex j when
presented the graph with partial colouring S, and then colour it with colour
x.

– For a partial colouring S, we denote byNi(S) the number of uncoloured nodes
having i available colours i.e. having coloured neighbours of 3 − i different
colours.

– The evolution operator H encodes the action of DPLL. Its matrix elements
in the spanning basis are, see Fig. 7,
1. if S is an improper colouring of G, that is if two adjacent vertices have

the same colour in S, 〈S′|H|S〉 = 1 if S′ = S, 0 otherwise.
2. if S is a partial but not improper colouring of G, 〈S′|H|S〉 = hn(j|S) ×
hv(x|S, j) if N1(S) ≥ 1 and S′ = S(j,x1), hn(j|S) if N1(S) = 0 and (S′ =
S(j,x2) or S′ = S(j,x′

2)), 0 otherwise. Here S, S′ are the partial colourings
attached to |S〉, |S′〉, x1 (respectively x2, x

′
2) denote the colour(s) available

to the 1-colour (resp. 2-colour) node7.

7 Notice that, under our assumption that the graph is connected, there will always be
at least one node with two or one available colours.
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Fig. 7. Transitions allowed by the heuristic-induced evolution operator. Grey and black
nodes correspond to the case of colouring of 1-colour and 2-colour nodes respectively,
as in Fig. 6. A. If partial colouring S is improper for G, it is left unchanged. B. If
the partial colouring has not led to any contradiction yet and there is at least 1-colour
node, a 1-colour node is chosen, say j, and coloured as required, say with colour sj = x
(grey node). The output partial colouring is Sj,x. C. If the partial colouring is not
improper and there is no 1-colour node, a 2-colour node is coloured through splitting
(black node). Two partial colourings are generated, Sj,x2 and Sj,x′

2 where sj = (x2, x
′
2).

3.2 Gluing Partial Proofs of Uncolourability and Time Reversal

In this section, we show that the expectation value over the random colourings
of variables of the size (number of leaves) of the search tree produced by DPLL
to prove the uncolourability of G is equal to

B =
∑

S

〈S|HN |E〉, (5)

where HN denotes the N th matrix power of H, the sum runs over all 4N partial
colourings S, and the rightmost vector |E〉 = |R,U,U, . . . , U〉 corresponds to
the initial colouring of G [15].

Let S be a partial colouring. We call refutation tree built from S a complete
search tree that proves the uncolourability of G conditioned to the fact that
DPLL is allowed to colour only nodes which are uncoloured in S. The height
of the search tree is the maximal number of colourings leading from the root
node (attached to partial colouring S) to a contradictory leaf. Let bT (S) be the
average size (number of leaves) of refutation trees of height ≤ T that can be
built from partial colouring S. Let us call W the set of improper colourings of
G i.e. of partial colourings S assigning the same colour to two adjacent vertices.
Clearly, bT (S) = 1 if S ∈W and bT (S) ≥ 2 otherwise.

Assume now T is an integer larger or equal to 1, S a partial colouring with
N1(S) 1-colour nodes. Our parallel representation of DPLL allows us to write
simple recursion relations:
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1. if S ∈W , bT (S) = 1 = bT−1(S).
2. if S /∈W and N1(S) ≥ 1,

bT (S) =
N∑

j=1

∑

x1

hn(j|S)hv(x1|S, j) bT−1
(
S(j,x1)

)
. (6)

3. if S /∈W and N1(S) = 0,

bT (S) =
N∑

j=1

hn(j|S)
[
bT−1

(
S(j,x2)

)
+ bT−1

(
S(j,x′

2)
)]
. (7)

In the above equations, x1, x2, x
′
2 denote colours as defined in Sect. 3.1. These

three different cases are symbolised on Fig. 7A, B and C respectively. From the
definition of H, these recursion relations are equivalent to

bT (S) =
∑

S′
〈S′|H|S〉 bT−1(S′), (8)

for any partial colouring S. Let |bT 〉 be the vector of V whose coefficients on the
spanning basis {|S〉} are the bT (S)’s. In particular, |b0〉 is the sum of all improper
colourings in W . Then identity (8) can be written as |bT 〉 = H† |bT−1〉 where H†

is the transposed of the evolution operator. The apparition of the time reversal
operator H† is very natural since we glue partial refutation trees to build bigger
and bigger ones to finally refute G from the initial (almost) empty colouring E.

The average size of refutation trees of height T obtained without any a priori
knowledge on G is simply bT (E) = 〈E|bT 〉. Since refutation trees cannot have
height larger than the number of nodes N , it is easy to show that the average
size of the proof of uncolourability of G generated by DPLL is

B ≡ bN (E) = 〈E|(H†)N |b0〉 =
∑

S

〈E|(H†)N |S〉 =
∑

S

〈S|HN |E〉 (9)

as claimed in equation (5).

3.3 Dynamical Annealing and the Search Growth Process

Calculation of the expectation value of the N th power of H, and of its average
over the instance distribution is a hard task. We therefore turned to a simpli-
fying approximation, called dynamical annealing. Call population vector N(S)
of a partial colouring S the three dimensional vector N = (N1, N2, N3) where
Nj is the number of nodes with j available colours. The quantity we focus on is
B̄(N ;T + 1), the expectation number of branches at depth T in the search tree
(Fig. 6) carrying partial colourings with population vector N = (N1, N2, N3).
Within the dynamical annealing approximation, the evolution of the B̄’s is
Markovian,
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B̄(N ;T + 1) =
∑

N ′
H̄ [N ,N ′;T ] B̄(N ′;T ). (10)

The entries of the evolution matrix H̄[N ,N ′;T ] can be calculated from the
definition of the evolution matrix N [15]. They can be interpreted as the average
number of branches with population vector N that DPLL will generate through
the colouring of one node from a partial colouring with population vector N ′.
We find

H̄(N ,N ′;T ) =
N ′

3∑

w2=0

(
N ′

3

w2

)( c
N

)w2
(
1− c

N

)N3

δN ′
3−N3−w2× (11)

{
{(1− δN ′

1
)
N ′

2∑

w1=0

(
N ′

2

w1

)(
2c
3N

)w1
(

1− 2c
3N

)N ′
2−w1

δN2−N ′
2−(w2−w1)δN1−N ′

1−w1+1+

2 δN ′
1

N ′
2−1∑

w1=0

(
N ′

2 − 1
w1

)(
2c
3N

)w1
(

1− 2c
3N

)N ′
2−w1−1

δN2−N ′
2−(w2−w1−1)δN1−N ′

1−w1

}

where δN is the Kronecker delta function. Note that (11) is written under the
condition that no 3-colour nodes are chosen by the algorithm throughout the
growth process. This condition is consistent with the assumption that the graph
G is connected, and with the fact that initially one node is coloured.

Let us examine how a step of the algorithm affects the size of the three
populations N1, N2, N3. Since the average connectivity is O(1) i.e. each vertex
is connected on average only to O(1) vertices, when a vertex is coloured, the
number of vertices whose status (the number of available colours) is subsequently
changed is bounded from above by the number of neighbours of the coloured
vertex. Hence a reasonable assumption is that the densities ni = Ni/N change
by O(1) after T = t × N vertices are coloured. In addition, we expect that, as
soon as N1(T ) becomes very large, contradictions are very likely to occur, and
the growth process stops. Throughout the growth process, N1 = O(1) almost
surely. Thus n1 = 0 with high probability. The corresponding Ansatz for the
number of branches is,

B̃(N ;T ) = eN ω(n2,n3;t)+o(N) (12)

where non-exponential terms in N depend on the populations of i-colour nodes
(i = 1, 2, 3). At the initial stage of the tree building up, there is a single outgoing
branch from the root node, carrying a fully uncoloured graph. Thus, B̄(N ;T =
0) = 1, and

ω(n2, n3; t = 0) =
{

0 if (n2, n3) = (0, 1) ,
−∞ if (n2, n3) �= (0, 1) .

Insertion of Ansatz (12) into evolution equation (10) leads to the following
partial differential equation for the logarithm ω(n2, n3; t) of the average number
of branches with densities n2, n3 of 2- ,3-colours nodes [16],



Analysis of a Backtrack Algorithm for the Colouring of Random Graphs 249

0

0.01

0.02

0.03

0

0.01

0.02
0.7 0.75 0.8 0.85 0.9 0.95 1

0

2

4

6

8

x 10
−3

n
3

t

ω

Fig. 8. Function ω (log. of number of branches with densities n2 = 1 − t − n3, n3 of 2-
and 3-colour nodes at depth t in the search tree) as a function of n3 and t for c = 10.
The top of the curve at given time t, ω∗(t), is reached for the dominant branch 3-colour
density n∗

3(t). The evolution of ω is shown till t = th at which dominant branches in
the search tree stop growing (die from the onset of contradictions). The maximal ω at
th, ω∗(th), is the theoretical prediction for the complexity.

∂ω

∂t
=
∂ω

∂n2
+ ln 2− c

3
n2 + c n3

[
exp

(
∂ω

∂n3
− ∂ω

∂n2

)
− 1

]
. (13)

The surface ω, growing with “time” t above the plane n2, n3 describes the whole
distribution of branches. Here, this distribution simplifies due to nodes conser-
vation. The sum n2 +n3 of 2- and 3-colour nodes densities necessarily equals the
fraction 1 − t of not-yet coloured nodes. Therefore, ω is a function of n3 and t
only, whose expression is obtained through the exact resolution of (13) with the
above initial condition (see Sect. 4 for comments on the resolution),

ω(n3; t) =
c

6
t (1− 2 t− 4n3)− n3 ln n3 − (1− n3) ln (1− n3)−

(1− t− n3) ln 2 + (1− n3) ln
[
3
(

1− e− 2 t c/3
)]

. (14)

Figure 8 exhibits ω(n3, t) for c = 10.
The maximum ω∗(t) over n2, n3 of ω(n2, n3; t) at depth t in the tree gives

the logarithm of the average number of branches at depth t divided by N . The
search tree keeps growing as long as no contradictions are encountered i.e. as
long as 1-colour vertices do not accumulate. This amounts to say that dominant
branches are not suppressed by contradictions and become more and more nu-
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Table 1. Analytical results and simulation results of the complexity ω for different
connectivities c in the uncolourable phase. The analytical values of ωTHE are derived
from theory; ωEXP is obtained through experimental measures of the search tree size
and averages over input graphs [16].

c ωTHE ωNOD

20 2.886 ∗ 10−3 3 ∗ 10−3 ± 3 ∗ 10−4

15 5.255 ∗ 10−3 5.8 ∗ 10−3 ± 5 ∗ 10−4

10 1.311 ∗ 10−2 1.5 ∗ 10−2 ± 1 ∗ 10−3

7 2.135 ∗ 10−2 3. ∗ 10−2 ± 3.6 ∗ 10−3

merous through 2-colour nodes colouring, dω∗/dt > 0. Call th the halt time at
which this condition ceases to be fulfilled. The logarithm ω∗(th) of the number of
dominant branches at t = th, when divided by ln 2, yields our analytical estimate
for the complexity of resolution. Agreement between theory and numerics is very
good at large c (see Table 1) but deteriorates at small c. However, the high com-
putational complexity of the algorithm for small c values, does not allow us to
obtain numerical results for large sizes N , and affects the quality of the large N
extrapolation of ω. As c increases, contradictions emerge in an earlier stage of
the algorithm, the probability that the same vertex appears in different branches
reduces, and the analytical prediction becomes exact. As a consequence of the
early appearance of contradictions, the complexity ω decreases with c. At very
large c, we find

ω(c)  3 ln 2
2

1
c2
� 1.040

c2
, (15)

and therefore that the (logarithm of the) complexity exhibits a power law decay
with exponent 2 as a function of connectivity c.

3.4 More Than Three Colours

The scaling exponent appearing in eqn (15) strongly depends on the number of
colours, here three. The whole procedure described above can be extend to the
study of K-COL, where K is the number of colours. Let us concentrate on the
case of large degrees c, where the output of the dynamical annealing procedure
is conjectured to be exact. We find that the logarithm of the average complexity
scales as

ω(c)  Ω(K) c−(K−1)/(K−2) (16)

where the constant Ω depends on the details of the Greedy heuristic. For the
heuristic analysed in Sect. 1.2 with preferential colouring of nodes with the
smallest number of available colours,

Ω(K) =
K(K − 2)
K − 1

[
2 ln 2
K − 1

]1/(K−2)

. (17)
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A less sophisticated Greedy heuristic corresponds to colouring nodes with one
available color if any, any node otherwise. The multiplicative factor entering eqn
(16) is then,

Ω(K) =
K(K − 2)
K − 1

lnK
[
K lnK

(K − 1)2

]1/(K−2)

. (18)

Recent works suggest that the correctness of the decay exponent in eqn (16)
could be rigorously established [17].

4 Conclusions: What Is Missing?

In this article, we have presented a quantitative study of the search tree growth
process accompanying the backtrack resolution of the random graph colouring
problem, especially in presence of massive backtracking. Here are some remarks
regarding the approach:

1. From a mathematical point of view, it is worth noticing that monitoring
the growth of the search tree requires a partial differential equation, while
ordinary differential equations are sufficient to account for the evolution of a
single branch [18]. Yet, the partial differential equation is of the first-order8,
and can be solved using the characteristics method based on the use of an
appropriate set of ordinary differential equations only. Dominant branches
at time t′ > 0 are indeed completely described by the set of coupled ordinary
differential equations, see eqn (13),

dn3(t)
dt

= −c n3(t) exp
(
ψ(t)

)
, (19)

dψ(t)
dt

= c exp
(
ψ(t)

)− 2
3
c, (20)

for all intermediate times 0 < t < t′ with the boundary conditions n3(0) = 1
and ψ(t′) = 0. The new field ψ is related to the derivative of the surface
ω at density n3. Notice the equivalence of equation (19) when ψ = 0 and
the dynamical equation (3) describing a single branch. In other words, the
equations for the evolution of a search tree look like to the ones of a single
branch in the absence of backtracking up to the presence of a statistical bias
imposed by the field ψ.
Remarkably, the idea of an effective branch was at the base of the phe-
nomenological approach proposed by Knuth three decades ago [1]. The sta-
tistical physics approach is, to some extent, an analytical realization of this
idea.

8 This statement is correct in the large size limit only. Finite size corrections would
introduce second derivative terms with 1/N multiplicative coefficients. See [19] for
a similar situation.
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2. It is likely from the above discussion and numerical experiments that our
theory is exact at large connectivity c but requires some corrections for small
connectivities. These corrections come from the fact that we have neglected
statistical correlations between branches in the search tree resulting from the
average over the random graph to be colored. Though these correlations are
expected to vanish at large c, they should give some contribution for finite
c to the equations describing the dynamical evolution of the search tree.
What is the structure of this contribution? A precise answer to this question
will come from a detailed study of operator H along the lines recently initi-
ated for another out-of-equilibrium system called the Contact Process [20].
It may be guessed that the output of such a calculation will be the emer-
gence a systematic 1/c expansion for n3 with non Markovian retarded terms
on the right hand side of equation (19) involving the value of the density of
3-color nodes at all times < t. This structure is expected from the similarity
of the present problem and the one treated in [20], and the fact that ne-
glecting correlations between branches in the search tree precisely amounts
to neglecting all non-Markovian terms in the evolution of the search tree9.

3. From a qualitative point of view, the average complexity of DPLL for the
3-COL problem is linear for c < cL with finite probability, and exponential
for c > cL. Right at the location of the cross-over, that is, for connectivity
c = cL, we expect an average complexity growing as a stretched exponential
of the size of the graph. A precise determination of the exponent is under
way.

4. The present study is part of a general effort to understand the extremal
statistics of correlated variables, and is related to studies on random binary
trees to which statistical mechanics ideas have recently been applied [21].
From this point of view, it would be interesting to see to what extent the
results presented in this article are changed when the input graph distri-
bution is modified e.g. for random graphs with preferential attachment and
power-law degree distributions.

5. Last of all, the study of the operator H is interesting regardless of its com-
puter science interpretation. H is a non Hermitean evolution operator, and
the halt of dominant branches is deeply related to a localization vs. delocal-
ization transition of its dominant eigenvector [4].

In view of the above remarks, one may be quite confident that a major un-
derstanding of the average-case performances of backtracking algorithms will
be obtained in the next future. To what extent these results will find rigorous
support is however not clear.

9 To be more precise, as stated in Sect. 3.1, the parallel coloring process is Markovian
for a fixed graph but is not any longer once the average over the underlying graph
has been carried out.
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Abstract. We study the scalability of parallel discrete-event simulations for arbitrary
short-range interacting systems with asynchronous dynamics. When the synchroniza-
tion topology mimics that of the short-range interacting underlying system, the vir-
tual time horizon (corresponding to the progress of the processing elements) exhibits
Kardar-Parisi-Zhang-like kinetic roughening. Although the virtual times, on average,
progress at a nonzero rate, their statistical spread diverges with the number of process-
ing elements, hindering efficient data collection. We show that when the synchroniza-
tion topology is extended to include quenched random communication links between
the processing elements, they make a close-to-uniform progress with a nonzero rate,
without global synchronization. We discuss in detail a coarse-grained description for
the small-world synchronized virtual time horizon and compare the findings to those
obtained by “simulating the simulations” based on the exact algorithmic rules.

1 Introduction

Synchronization is a fundamental problem in natural or artificial coupled multi-
component systems [1]. To achieve it in an autonomous fashion can be a particu-
larly challenging task from a system design viewpoint. In this chapter we discuss
such a problem in the context of scalable Parallel Discrete-Event Simulations
(PDES) [2–4]. Examples of PDES applications include dynamic channel alloca-
tion in cell phone communication network [4,5], models of the spread of diseases
[6], battle-field simulations [7], and dynamic phenomena in highly anisotropic
magnetic systems [8–10]. In these examples the discrete events are call arrivals,
infections, troop movements, and changes of the orientation of the local magnetic
moments, respectively. We focus on the basic algorithm suitable for simulating
large spatially extended systems with short-range interactions and asynchronous
dynamics [11,12].

In discrete-event simulations, the instantaneous local updates (discrete-
events) occur in continuous time. The algorithm must faithfully and reproducibly
keep track of the asynchrony of the local updates in the system’s configuration.
For example standard random-sequential Monte Carlo simulations naturally pro-
duce Poisson asynchrony. In fact, such continuous-time simulations (e.g., sin-

H. Guclu, G. Korniss, Z. Toroczkai, and M.A. Novotny, Small-World Synchronized Computing Net-
works for Scalable Parallel Discrete-Event Simulations, Lect. Notes Phys. 650, 255–275 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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gle spin-flip Glauber dynamics) were long believed to be inherently serial until
Lubachevsky’s illuminating work [11,12] on the parallelization of these simula-
tions without altering the underlying dynamics. The essence of the problem is to
algorithmically parallelize “physically” non-parallel dynamics of the underlying
system. This requires some kind of synchronization to ensure causality. The two
basic ingredients of PDES are the set of local simulated times (or virtual times
[13]) and a synchronization scheme. First, a scalable PDES scheme must ensure
that the average progress rate of the simulation approaches a nonzero constant
in the long-time limit as the number of Processing Elements (PEs) N goes to
infinity. Second, the “width” of the simulated time horizon (the spread of the
progress of the individual PEs) should be bounded as N goes to infinity [14].
The second requirement is crucial for the measurement phase of the simulation
to be scalable: a large width of the virtual time horizon hinders scalable data
management. Temporarily storing a large amount of data on each PE (being ac-
cumulated for “on-the-fly” measurements) is limited by available memory while
frequent global synchronizations can get costly for large N . Thus, one aims to
devise a scheme where the PEs make a nonzero and close-to-uniform progress
without global synchronization. In such a scheme, the PEs autonomously learn
the global state of the system (without receiving explicit global messages) and
adjust their progress rate accordingly.

As the number of PEs available on parallel architectures increases to hun-
dreds of thousands [15], or grid-computing networks proliferate the internet [16,
17] fundamental questions of the scalability of the underlying algorithms must
be addressed. The center of our interest here is to understand the effects of
the “microscopic dynamics” (corresponding to the algorithmic synchronization
rules) and the effects of the underlying communication network among the PEs
on the evolution and the morphological properties of the virtual time horizon.
We achieve this by looking at the parallel simulation itself as a complex interact-
ing system. A similar approach was also successful to establish connection [18]
between rollback-based (or optimistic) schemes [13] and self-organized criticality
[19]. Our main finding is that extending the basic conservative synchronization
rules [11,12] to a small-world-like [20] communication topology among the PEs
results in both a finite width of the time horizon and a nonzero progress rate of
the simulation [21]. Performing additional synchronizational steps through the
random links at a very small rate can only reduce the average progress rate in-
finitesimally while the width is reduced from infinity (in the limit of an infinite
number of PEs) to some manageable finite value.

2 The Basic Conservative Scheme

The basic notion of discrete-event simulations is that time is continuous and the
discrete events occur instantaneously. Between events, the state (configuration)
of the system remains unchanged. If the events occur at random instants of
time, the dynamics can be referred to as asynchronous. In conservative PDEs
schemes [22], only those PEs that are guaranteed not to violate causality are
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allowed to process their events and increment their local time. The rest of the
PEs must “idle”. For simplicity we consider an arbitrary but one-dimensional
underlying system (the “physical” system to be simulated) with nearest-neighbor
interactions in which discrete events (update attempts in the local configuration)
exhibit Poisson asynchrony. Further, we focus on the one site-per-PE scenario
where each PE has its own local simulated time hi(t), constituting the virtual
time horizon {hi(t)}Ni=1. Here t is the number of parallel steps executed by all
PEs (proportional to the wall-clock time) and N is the number of PEs. By
construction, hi(t) is the progress of PE i after parallel step t. In the following, we
will use the terms “height”, “simulated time”, or “virtual time” interchangeably,
since we refer to the same observable.

According to the basic conservative synchronization scheme, first introduced
by Lubachevsky, [11,12], at each parallel step t, only those PEs for which the
local simulated time is not greater then the local simulated times of their virtual
neighbors, can increment their local time by an exponentially distributed random
amount. (Without loss of generality we assume that the mean of the local time
increment is one in simulated time units [stu].) Thus, for the one-site-per-PE,
one-dimensional regular virtual topology, if hi(t) ≤ min{hi−1(t), hi+1(t)}, PE
i can update the configuration of the underlying site it carries and determine
the time of the next event. Otherwise, it idles. Despite its simplicity, this rule
preserves unaltered the asynchronous causal dynamics of the underlying system
[11,12]. (More general PDES schemes, where events to be processed by a PE are
initiated (or generated) by the same PE (such as the basic conservative scheme
above), are also referred to as self-initiating discrete-event schemes [23,24].) In
the original algorithm, the virtual communication topology between PEs mimics
the interaction topology of the underlying system [11,12,25]. When “simulating
the simulations” based on the above simple “microscopic” rules for the evolution
of the time horizon, we implemented periodic boundary conditions, i.e., the PEs
are placed on a ring. In analyzing the performance of the above scheme, it is
enormously helpful that the progress of the simulation itself is decoupled from
the possibly complex behavior of the underlying system. This is contrary to
optimistic approaches, where the evolution of the underlying system and the
progress of the PDES simulation are strongly entangled [18], making scalability
analysis a much more difficult task.

To understand the scalability and performance of the basic conservative
scheme we study two basic observables: the average utilization 〈u〉 (the fraction
of non-idling PEs), which directly corresponds to the average rate of progress of
the simulation, and the average width of the virtual time horizon, which probes
the complexity of data management during the simulation. On a regular one-
dimensional lattice the utilization is the density of local minima

〈u〉 = 〈Θ(hi−1 − hi)Θ(hi+1 − hi)〉 = 〈Θ(−φi−1)Θ(φi)〉 , (1)

where φi ≡ hi+1 − hi is the local slope, Θ(. . . ) is the Heaviside step function,
and 〈. . . 〉 denotes an ensemble average over the stochastic, exponentially dis-
tributed local simulated time increments. For a system of identical PEs (imply-
ing translational invariance), the above quantity is independent of i. The width,
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characterizing the spread of the time horizon, is defined as

〈w2〉 =

〈
1
N

N∑

i=1

(hi − h̄)2
〉

(2)

where h̄ = (1/N)
∑N
i=1 hi is the mean-height.

Here we use a coarse-grained description for the virtual time horizon to per-
form the scalability analysis [25,26]. It was shown [25] that the virtual time hori-
zon exhibits Kardar-Parisi-Zhang (KPZ)-like [27] kinetic roughening [28] and the
steady-state behavior in one dimension is governed by the Edwards-Wilkinson
(EW) Hamiltonian [29]. The evolution of the simulated time horizon is effectively
governed by the Langevin equation

∂thi(t) = ∇2hi − λ(∇hi)2 + . . .+ ηi(t) , (3)

where ηi(t) is a delta correlated Gaussian noise 〈ηi(t)ηj(t′)〉=2Dδijδ(t− t′), and
∇ and ∇2 are the discrete gradient and discrete Laplacian operators on a regular
lattice, respectively. The . . . in (3) stands for infinitely many irrelevant terms
in the long-time, large-N limit. Being primarily interested in the steady-state
properties of the algorithm, we consider the equal-time height-height correla-
tions, or alternatively, its Fourier transform, the corresponding structure factor
S(h)(k, t), defined through

S(h)(k, t)Nδk,−k′ ≡ 〈h̃k(t)h̃k′(t)〉 . (4)

Here h̃k =
∑N
j=1 e

−ikjhj is the Fourier transform of the virtual times with the
wave number k = (2πn)/N , n = 0, 1, 2, . . . , N−1. In the long time limit in one
dimension (EW stationary state), one has [26]

S(h)(k) ≡ lim
t→∞S

h(k, t) =
D

2[1− cos(k)]
. (5)

The structure factor essentially contains all the “physics” needed to describe the
scaling behavior of the time horizon. Figure 1(a) shows the measured structure
factor, obtained by simulating the PDES simulation itself, based on the exact
rules for the evolution of the local times. It confirms the ∼1/k2 coarse-grained
prediction for small k values. Using the steady-state structure factor, one can
express the width as

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) . (6)

The above summation can be carried out for the structure factor given by (5),
yielding

〈w2〉N � D

12
N ∼ N2α , (7)
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Fig. 1. (a) Steady-state height-height structure factor for various system sizes for the
regular one-dimensional lattice, one-site-per-PE basic conservative PDES time hori-
zon. The solid straight line indicates the theoretical ∼1/k2 behavior, (5), for small k
values. (b) Steady-state width and extreme-height fluctuations for the same scheme as
a function of the number of PEs. The dashed straight line corresponds to the exact
KPZ (EW in one dimension) roughening (7).

(corresponding to a roughness exponent α=1/2) in the limit of large N . Fig-
ure 1(b) shows the measured width, asymptotically approaching the above scal-
ing form. For later calculations, we will also need the slope-slope steady-state
structure factor

S(φ)(k) = 2[1− cos(k)]S(h)(k) = D (8)

and the corresponding correlation function

C(φ)(l) = 〈φiφi+l〉 =
1
N

∑

k 	=0

eiklS(φ)(k) (9)

to study the density of local minima. From (8) and (9) it trivially follows that
C(φ)(l)=Dδl,0 (i.e., the local slopes become independent) in the infinite system-
size limit. Then the probability that two neighboring local slopes form a local
minima is 1/4. Hence, the density of local minima and the utilization 〈u〉 [see (1)]
approaches 1/4. (The steady state is governed by the EW Hamiltonian where
the local slopes are independent.)

For more general two-point functions (but still within the coarse-grained
Gaussian picture (5), we utilize a simple relationship between the density of
local minima and the slope-slope correlation function [26]

〈Θ(−φi−1)Θ(φi)〉 =
1
2π

arccos
(
C(φ)(1)
Cφ(0)

)
. (10)

The above formula can be used, e.g., to extract finite-size corrections to the
utilization [26]. From (8) and (9), for a finite system, one finds that C(φ)(l) =
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D(δl,0 − 1/N) and from (1) and (10), 〈u〉 � 1/4 + 1/(2πN). Clearly, the specific
value 1/4 in the thermodynamic limit and the prefactor of the 1/N finite-size
corrections will differ from those of the actual PDES evolution with its specific
“microscopic dynamics”. The density of local minima, however, must remain
nonzero and it displays universal finite-size effects [25,26,30–34],

〈u〉N � 〈u〉∞ +O
(

1
N

)
, 〈u〉∞ �= 0 , (11)

based on the universality class (EW in one dimension) the virtual time hori-
zon belongs to. Thus, the average progress rate of the simulation approaches a
nonzero constant in the asymptotic long-time, large-N limit. For example, for
the one-site-per PE basic conservative PDES scheme 〈u〉∞�0.2464 [25,26], due
to non-universal short-range correlations between the local slopes [35].

The average width of the virtual time horizon, however, diverges as N→∞
[see (7)], making the measurement phase of the PDES scheme (data collection)
not scalable [30]. Since the effect of very large fluctuations in the progress of the
individual PEs is also important (after all, delays will be caused by state-saving
difficulties on the individual nodes, where extreme events occur), we investigated
the properties of the extremal-height fluctuations. We considered the average of
the largest height fluctuations above the mean ∆max ≡ hmax − h̄. The average
or typical extreme-height fluctuations in the basic conservative PDES scheme
exhibit the same scaling behavior as the width itself, 〈∆2

max〉∼N [Fig. 1(b)]. This
is not particularly surprising in that the extreme fluctuations emerge through
the dominating collective long-wavelength modes of the “critical” surface. This
finding was also observed [36] for other surface growth models belonging to KPZ
universality class.

Finally, we note that, in an attempt to construct an analytically tractable
model for PDES, Greenberg et al. [14] introduced the K-random model. Here
at each update attempt, PEs compare their local simulated times to the local
simulated times of K randomly chosen PEs (rechosen at every update attempt).
They showed that in the t→∞, N→∞ limit the average rate of progress of
the simulation converges to a non-zero constant, 1/(K + 1). Further, they also
showed that the evolution of the time horizon converges to a traveling wave so-
lution described by a finite width of the distribution of the local times. Finally,
they suggested that the qualitative properties of the K-random model are uni-
versal and hold for regular lattice models as well. As we have shown above, their
latter conjecture for the width does not hold, thus, the basic conservative PDES
scheme for regular lattices cannot be equivalently described by K-random model
(at least not below the critical dimension of the KPZ universality class [28,37]).
Nevertheless, their “annealed” random connection model is highly inspiring in
that the underlying connection topology can have crucial effects on the univer-
sal behavior of the evolution of the virtual time horizon, and in turn, on the
synchronizability of PDES schemes.
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3 The Small-World Synchronized
Conservative PDES Scheme

3.1 Motivation and Properties for the Synchronization Network

The divergent width and extreme-height fluctuations (with increasing N), dis-
cussed in the previous section, are the result of the divergent lateral correlation
length ξ(h) of the virtual time surface, which reaches the system size N in the
steady state [28,30]. To de-correlate the simulated time horizon, first, we modify
the virtual communication topology of the PEs. The resulting communication
network must include the original short-range (nearest-neighbor) connections
to faithfully simulate the dynamics of the underlying system. In the modified
network, the connectivity of the nodes (the number of neighbors) should remain
non-extensive (i.e., only a finite number of virtual neighbors per node is allowed).
This is in accordance with our desire to design a PDES scheme where no global
“intervention” or synchronization is employed (PEs can only have O(1) commu-
nication exchanges per step). It is clear that the added synchronization links (or
at least some of those) have to be long range. (Only short range links would not
change the universality class and the scaling properties of the width of the time
horizon). Also, fluctuations in the individual connectivity should be avoided for
load balancing purposes, i.e., requiring the same number of added links (e.g.,
one) for each node is a reasonable constraint.

One may wonder how the collective behavior of the PDES scheme would
change if each node was connected to the one located at the “maximum” possible
distance away from it (N/2 on a ring) [Fig. 2(a)] [38]. Consider a linear coarse-
grained Langevin equation with Gaussian noise where the effective strength of
the added long-range links is Σ,

∂thi(t) = (hi+1 + hi−1 − 2hi)−Σ(hi − hi+N/2) + ηi(t) , (12)

with periodic boundary conditions. After elementary calculations one obtains
for the width

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) =
1
N

∑

k 	=0

D

2[1− cos(k)] + 2Σ[1− cos(kN/2)]
, (13)

where k = (2πn)/N , n = 0, 1, 2, . . . , N−1 as before (and N is even for simplicity).
Separating the terms with even and odd n values above, we find

〈w2〉 =
1
N

∑

n=odd

D

2[1− cos(2πn/N)] + 4Σ

+
1
N

∑

n=even

D

2[1− cos(2πn/N)]
. (14)

The first sum yields a finite N independent value in the N→∞ limit. The sec-
ond sum, on the other hand, is identical to the width of the EW model on
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(a) (b)

Fig. 2. Schematic diagrams for the PDES synchronization networks. (a) Maximal-
distance connected network as described in the text. (b) Small-world network where
each PE has exactly one quenched random neighbor.

a regular network of size N/2. Thus, in the large N limit the width for the
“maximal-distance” connected network [Fig. 2(a)] diverges as 〈w2〉N�DN/24.
Indeed, one can realize, that such regularly patterned long-range links make
the network equivalent to a 2×(N/2) quasi one-dimensional system with only
nearest-neighbor interactions and helical boundary conditions. The above ex-
treme case suggests, that the purely maximum-range synchronization cannot
work either.

We then choose the extra synchronization links in such a way that they cover
all lengthscales with equal weight [21]. With the one extra link per PE constraint,
we employ quenched random bidirectional links, i.e., each PE is connected to
exactly one other PE, as illustrated on Fig. 2(b). That is, pairs of sites selected
at random, and once they are linked they cannot be selected again. The resulting
network resembles a (constrained) small-world-like network [20]. It differs from
both the original (“rewiring”) [20,39] and the “soft” version [40,41] of the Small-
World (SW) network (where an Erdős-Rényi random graph is thrown on top
of a regular lattice). Our construction too, however, exhibits a well balanced
coexistence among short- and long-range links (random links are placed on the
top of a regular substrate), and we will refer to it as a SW network in what
follows. When explicit distinction is needed among the above versions of the
SW networks, we will refer to our construction as the “hard” version of the
SW network. This terminology is motivated by the eigenvalue spectrum of the
Laplacian on the different variations of the SW networks [42,43], discussed in
more detail in [43,44] and in the chapter by Hastings and Kozma in this book.

As one can expect, the average path length 〈l〉N (the average minimum num-
ber of links connecting two randomly chosen nodes) for our synchronization net-
work scales logarithmically with the system size N [Fig 3], i.e., like most other
random networks [45], it too exhibits the “small-world” character (or low-degree
of separation).

We now describe the modified algorithmic steps for the SW connected PEs
[21]. In the modified conservative PDES scheme, at every parallel step each
PE with probability p compares its local simulated time with its full virtual
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Fig. 3. Average shortest path as a function of the logarithm of the number of nodes
(PEs) for our small-world synchronization network [Fig. 2(b)]. The straight line rep-
resents the slope of the asymptotic large N behavior of the average shortest path
〈l〉N � 1.42 ln(N).

neighborhood and can only advance if it is a neighborhood minimum, i.e., if
hi(t) ≤ min{hi−1(t), hi+1(t), hr(i)(t)}, where r(i) is the random connection of
PE i. With probability (1 − p) each PE follows the original scheme, i.e., the
PE then can advance if hi(t) ≤ min{hi−1(t), hi+1(t)}. Note that the occasional
extra checking of the simulated time of the random neighbor is not needed for
the faithfulness of the simulation. It is merely introduced to control the width
of the time horizon.

3.2 Coarse-Grained Equation of Motion
for the Small-World-Coupled Conservative PDES Scheme

We now obtain a coarse-grained description for the evolution of the virtual time
horizon. The occasional checking of the virtual time (at every 1/p parallel steps
on average) through the random links introduces an effective strength p̃ for
these links. Note that this is a dynamic “averaging” process, controlled by the
parameter p, the probability of checking the random neighbor as well. The only
properties we assume about p̃(p) is that it is a monotonically increasing function
of p and is only zero when p=0. The effective Langevin equation then becomes

∂thi(t) = (hi+1 + hi−1 − 2hi)−
N∑

j=1

Jij(hi − hj) + . . .+ ηi(t) , (15)

where ηi(t) is delta-correlated Gaussian noise as in (3) and Jij is proportional to
the symmetric adjacency matrix of the random part of the network with exactly
one non-zero element (being equal to p̃) in each row and column. The former
property implies that

∑
l Jil=p̃ for all i, which is related to our construction that

there are no fluctuations in the individual connectivity. The . . . in (15) stand for
all non-linear terms (involving non-linear interactions through the random links
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as well). “Phenomenological” results of simulating the simulation (Sect. 3.3)
suggest that the dynamic control of the link strength and non-linearities only
give rise to a renormalized coupling and a corresponding renormalized mass
(in a field theory sense). Thus, the dynamics is effectively governed by EW
relaxation in a small world. This motivates the study of the EW model on a
SW network, i.e., keeping only the linear terms in (15). That problem is studied
in detail in [43,44] and in the chapter by Hastings and Kozma in this book. A
disorder-averaged systematic perturbation expansion yields an effective “mass”
Σ(p̃) ∼ p̃ + O(p̃3/2) in the asymptotic small-p̃ limit. In our case, when non-
linearities are indeed present and the strength of the random links is controlled
by the relative frequency p of the synchronization steps through those links, we
will only assume that Σ(p) is a monotonically increasing function of p and is only
zero when p=0. In the following, for brevity, 〈. . . 〉 will denote the double average:
ensemble average based on the stochastic dynamics [e.g., over the noise in (15)],
and disorder average over the random network realizations. The resulting steady-
state structure factor (or propagator) for (15) then reads as [44]

S(h)(k) =
1
N
〈h̃kh̃−k〉 =

D

2[1− cos(k)] +Σ
. (16)

The above structure factor contains the essential properties of the SW synchro-
nized PDES scheme at the coarse grained level. In particular, the SW links in-
duce a finite correlation length ξ(h) for the surface fluctuations. In the following
we will only discuss the infinite-system small-Σ behavior, when the finite-size
effects vanish and the discrete-lattice effects become negligible. In this limit,
ξ(h)�1/

√
Σ. Also from (16), for the width of the time horizon one obtains

〈w2〉 =
1
N

∑

k 	=0

S(h)(k) � 1
2
√
Σ
. (17)

i.e., the width remains finite in the N→∞ limit. (Note that Σ(p) is only zero
when p=0.) The implication of this result for the SW synchronized PDES scheme
is that the spread of the virtual time horizon will approach a finite value in the
limit of infinite number of PEs for any nonzero value of p.

We now discuss some general considerations for the the utilization 〈u〉 (the
average progress rate) for the SW synchronized PDES scheme. From the algo-
rithmic rules it follows that

〈u〉 = (1− p)〈Θ(−φi−1)Θ(φi)〉+ p〈Θ(−φi−1)Θ(φi)Θ(hr(i) − hi)〉 , (18)

where p is the probability to include the random neighbor as well in the syn-
chronization step. Note that the disorder averaging makes the right hand side
independent of i. For general p (with the random links present) it is hard to carry
out quantitative approximations for the utilization. Since the height fluctuations
become short-range correlated (16) and the local slopes remain short-range cor-
related [see discussion below, (21)], it is guaranteed that both terms in (18),
and subsequently 〈u〉, remain non-zero for any 0≤p≤1 [35,46]. Rearranging the
terms in (18) one obtains
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〈u〉 = 〈Θ(−φi−1)Θ(φi)〉
− p [〈Θ(−φi−1)Θ(φi)〉 − 〈Θ(−φi−1)Θ(φi)Θ(hr(i) − hi)〉

]
. (19)

The first term, 〈Θ(−φi−1)Θ(φi)〉=〈Θ(hi−1 − hi)Θ(hi+1 − hi)〉, is an increasing
function of p, as the heights become less correlated [46]. For example, it would
be 1/4 for completely independent slopes, and it would be 1/3 for completely
independent heights. The actual values differ for the PDES time horizon (the
slopes and heights exhibit some short-range correlations), but the above trend
remains and 〈Θ(−φi−1)Θ(φi)〉 saturates rapidly as a function of p [46]. The
quantity in [. . . ] in (19) is always positive, bounded from zero, so it will eventually
lead to the decrease in 〈u〉 as O(p), once 〈Θ(−φi−1)Θ(φi)〉 saturates. For very
small values of p, however, the leading order correction to 〈Θ(−φi−1)Θ(φi)〉 may
become more dominant than O(p). In this case, as it is clear from (19), the small-
p behavior of 〈Θ(−φi−1)Θ(φi)〉 alone yields the asymptotic small-p behavior of
〈u〉.

We now continue to discuss the density of local minima and the utilization
for the coarse-grained linear model with Gaussian noise [(15) and (16)], which
may capture some of the small-p features of the actual PDES time horizon. We
also make the mean-field assumption that the structure factor and correlation
functions are self-averaging in the large system-size limit. First, from (16) we
find for the slope-slope structure factor

S(φ)(k) = 2[1− cos(k)]S(h)(k) = D

{
1− Σ

2[1− cos(k)] +Σ

}
, (20)

which yields

C(φ)(l) � D
{
δl,0 −Σe

−l√Σ

2
√
Σ

}
= D

{
δl,0 −

√
Σ

2
e−l

√
Σ

}
(21)

for the slope correlation function in the infinite system-size, small-Σ limit. The
above equation shows explicitly, that the local slopes remain short-range corre-
lated for the SW-synchronized time horizon. Using (10) and the above form of
the slope correlations, in the small-Σ limit we obtain

〈Θ(−φi−1)Θ(φi)〉 � 1
4

+
√
Σ

4π
− Σ

8π
+ . . . (22)

This implies that increasing the effective mass increases the density of local
minima. This is not surprising, in that increasing Σ reduces the correlation
length ξ(h) for the height fluctuations, as discussed above. Using (19) and (22),
we obtain for the utilization

〈u〉 � 1
4

+

√
Σ(p)
4π

− Σ(p)
8π

+ . . .+O(p) , (23)

where we now explicitly indicated the p-dependence of Σ. If Σ(p) is known,
more precisely, if Σ(p)∼ps with s<2 for small p values, the above equation
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becomes useful to extract the asymptotic small-p behavior of the utilization. It
is instructive to consider the mean-field case when the effective strength of the
random links [in (15)] scales as p, at least for small p values. Then Σ(p)∼p [44],
and to leading order in p, one finds

〈u〉 � 1
4

+
√
p

4π
+O(p) . (24)

The above counterintuitive behavior of increasing 〈u〉 by actually synchronizing
“more” is the result of the gain in 〈Θ(−φi−1)Θ(φi)〉 [O(

√
p)] winning over the loss

due to the occasional extra random synchronizations [O(p)], for asymptotically
small p values. As p is increased, (24) will not be valid anymore; 〈Θ(−φi−1)Θ(φi)〉
starts to saturate, so the change in 〈u〉 will be dominated by the −O(p) factor
in (19).

Some analogy between the evolution of the virtual time horizon with quenched
random links added and the sliding state of charge-density waves with “no-
passing” rule [47] suggests [48] that the above mean-field coarse-graining argu-
ment may break down and the average rate of progress of the SW-synchronized
conservative scheme for arbirary small p is bounded by that of the p=0 case.

3.3 Comparison with the Simulated Small-World
Synchronized PDES Results

We now turn to discussing the results obtained by simulating the actual PDES
scheme, based on the specific update rules for the local simulated times (see
the end of Sect. 3.1). The fundamental difference between the original and the
SW-synchronized conservative scheme is illustrated on Fig. 4. The snapshots
of the virtual times indicate that, indeed, the large-amplitude long-wavelength
fluctuations, present in the original time horizon [Fig. 4(a)] are suppressed when
the extra synchronizations through the quenched random links are implemented
[Fig. 4(b)].

Since all steady-state characteristics are “encoded” in the structure factor of
the virtual times, we measured this quantity, and compared it to

S(h)(k) ∝ 1
k2 +Σ(p)

, (25)

the small k limit of (16). Figure 5(a) shows the disorder-averaged structure
factors, as well as individual realizations for various system sizes. As one can
observe, finite-size effects become small and S(h)(k) approaches a finite value as
k→0. Thus, there are no large-amplitude, long-wavelength modes in the virtual
time horizon. Further, the inset of Fig. 5(a) confirms the “massive” behavior
(25) for small k values. It is important to note that for the actual PDES time
horizon, the effective mass Σ(p) may depend non-trivially on p as a result of
the dynamic control of the “link strength” and renormalization by nonlinear ef-
fects in the specific “microscopic dynamics”. The form of S(k), however, seems
to follow the linear theory, discussed in Sect. 3.2. By plotting 1/S(h)(k) vs. k2
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Fig. 4. Snapshots of the virtual time horizon in the steady state (a) for the original
regular lattice (p=0) and (b) for the small-world synchronized (p=0.10) PDEs scheme
for N=10000. The vertical scale is the same in (a) and (b).
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Fig. 5. (a) Steady-state structure factor of the virtual time horizon for p=0.10. In
addition to ensemble averages over 100 realizations of the random links (filled symbols),
single realizations (the same open symbols) are also shown. The inset shows a magnified
view of 1/S(k) versus k2 for small k for the largest system. The solid straight line is
the best linear fit used to determine the correlation length. (b) Correlation length
of the virtual time horizon as a function of the random synchronization frequency p.
For reference, the solid straight line corresponds to the power-law divergence with the
power −1/2.

[inset of Fig. 5(a)] for the measured structure factors, we can “phenomenologi-
cally” determine the correlation length of the fluctuations of the virtual times,
ξ(h)(p)�1/

√
Σ(p). The results are shown in Fig. 5(b)]. The inset implies, that

the asymptotic small-p scaling regime has not been reached yet at our smallest
value p=0.01.

The results for the width and for the utilization also agree with the ba-
sic prediction of the coarse-grained linear model. Even for small p values, the
width saturates, and approaches a system-size independent value for large N
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Fig. 6. (a) Average steady-state width of the virtual time horizon as function of
the number of PEs for various values of p. In addition to ensemble averages over 10
realizations of the random links (filled symbols), a single realization is also shown (the
same open symbols). The solid straight line represents the asymptotic one-dimensional
KPZ power-law divergence with roughness exponent α=1/2 for the p=0 case. Note the
log-log scales. (b) The steady-state utilization (fraction of non-idling PEs) for the same
cases as in (a).

[Fig. 6(a)] while the utilization remains non-zero [Fig. 6(b)]. For example, for a
hypothetically infinite system, for p=0.01, 〈w2〉 is reduced from “infinity” (the
width for the KPZ surface) to about 40, while the utilization drops from 0.2464
only to about 0.2460. For p=0.10, the width is further reduced to about 5,
while the utilization is down only to 0.242. One can also observe the clear self-
averaging property for both global observables (the width and the utilization),
i.e., their values become independent of the realization of the SW network for
large enough N .

To extract the asymptotic small-p behavior of the width and the utilization,
one would need larger system sizes, longer steady-state PDES time series, and
more network realizations to obtain reliable statistics, and to compare all as-
pects of the linearized coarse-grained model with the actual PDES simulations.
In particular, it would be interesting to see, whether the utilization increases ini-
tially for sufficiently small p values (the subtle prediction of the coarse-grained
linear theory). We have not observed this, but the systems we simulated have
not yet reached their asymptotic scaling regime [inset of Fig. 5(b)]. Further,
finite-size corrections and error bars may become comparable to this possible
asymptotically small effect in 〈u〉.



Small-World Synchronized Scalable Computing Networks 269

3.4 Extremal Fluctuations of the Virtual Time Horizon

In addition to the average value of the fluctuations of the local field variables
(such as the height in the context of surface growth models), the typical value of
the largest fluctuations can also be of great importance [49–51] in a number of ap-
plications. For example, in load balancing networks [52] or state-saving schemes
for PDES schemes [30,53], extreme (load or accumulated data) fluctuations on
an individual node will cause the delays. Thus, in interacting multi-component
systems such as the above examples, failures or delays are triggered by extreme-
events occurring on the individual components [51].

Relationship between extremum statistics and universal fluctuations in cor-
related systems have been discussed intensively in recent years. [36,54–60]. For
the original PDES scheme (p=0, regular lattice synchronization) exhibiting a
KPZ-like rough (or critical) surface, we illustrated (Sect. 2) that the extremal
fluctuations of the time horizon diverge in the same fashion as the width itself
[Fig. 1(b)]. We now discuss to what extent SW synchronizations lead to the
suppression of the extreme-height fluctuations in the virtual time horizon [53],
closely related to the measurement scalability of the conservative PDES scheme.

First, considerN independent identically distributed stochastic variables with
a complementer cumulative distribution P>(x) (the probability that the indi-
vidual stochastic variable is greater than x). Then the cumulative distribution
Pmax
< (x) for the largest of the N events (the probability that the extremal value

is less than x) can be approximated as [60,61]

Pmax
< (x) = [P<(x)]N = [1− P>(x)]N = eN ln[1−P>(x)] � e−NP>(x) , (26)

where one typically assumes that the dominant contribution to the statistics
of the extremes comes from the tail of the individual distribution P>(x). For
example, for exponentially-tailed individual variables, P>(x)�e−cx, the above
equation yields

Pmax
< (x) � e−e−cx+ln(N)

. (27)

Thus, the sequence of scaled variables x̃ = c(x − ln(N)/c) asymptotically ap-
proaches the standard Fisher-Tippett-Gumbel (FTG) distribution [49,50]

P̃max
< (x̃) � e−e−x̃

(28)

with mean 〈x̃〉=γ (γ=0.577 . . . being the Euler constant) and variance 〈x̃2〉 −
〈x̃〉2 = π2/6. It immediately follows that the average value of the largest of the
N original random variables then scales as

〈xmax〉 = γ/c+ ln(N)/c � ln(N)/c (29)

for large N values. When comparing with simulation or experimental data, it
is often convenient to use the scaled variables x̂ = (x − 〈x〉)/σx which for the
above case yields the FTG limit distribution with zero mean and unit variance
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Fig. 7. Disorder-averaged probability density (histogram) for the individual simulated
time fluctuations for various system sizes at p=0.10 (log-normal scales). The solid
straight line indicates a pure exponential tail.

P̂max
< (x̂) � e−e−(ax̂+γ)

, (30)

where a=π/
√

6. Note that with appropriately chosen scaled variables, the conver-
gence to the FTG distribution holds not only for exponential variables, but also
for more general ones with “exponential-like” tails P>(x)�e−cxδ

(i.e., decaying
faster than any power law) [49,50,60,61]. For any δ �=1, however, the convergence
to (28) or (30) is extremely (logarithmically) slow [61].

For the SW synchronized PDES scheme with N PEs we showed that a
finite correlation length ξ(h)(p)�1/

√
Σ(p) effectively decouples the local sim-

ulated times. Then, the extreme-value limit theorems can be applied [60,61]
using the number of independent blocks N/ξ(h) in the system. Further, we
found [62] that the tail of disorder-averaged distribution of the individual rel-
ative height fluctuations (independent of the site i) are simple exponentials
P>(hi − h̄)�exp[−c(hi − h̄)/w] with w≡√〈w2〉. The histogram for the corre-
sponding probability density function, p(hi − h̄), is shown in Fig. 7.

From the general extreme-value limit theorems, discussed above, it follows
that the scaled extreme-height fluctuations are governed by the FTG distribution
(30) (if scaled to zero mean and unit variance). Further, from (29), the average
maximum relative height, ∆max = hmax − h̄, will scale as

〈∆max〉 � w

c
ln(N/ξ(h)) � w

c
ln(N) , (31)

where we dropped all N -independent terms. Note that both w and ξ(h) approach
their finite N -independent values for any non-zero p, and the only N dependent
factor is ln(N) for large N values.

Agreement between the simulated PDES extremal fluctuations and the above
considerations are rather convincing. In Fig. 8(a) we show the scaled histograms
(to zero mean and unit variance) for the extreme-height fluctuations together
with the probability density, corresponding to (30)
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Fig. 8. Extreme fluctuations in the the small-world synchronized PDES time horizon
for p=0.10. (a) Probability density of the scaled extremal fluctuations and comparison
with the FTG density equation (32). (b) Average of the extremal fluctuations (also
shown is the width for comparison). The solid straight line indicates the logarithmic
divergence.

p̂(x̂) � ae−(ax̂+γ)−e−(ax̂+γ)
, (32)

We note again, that the underlying reason for the fast convergence to the FTG
density of the simulated time horizon is that the local relative height distri-
butions exhibit pure exponential tails. Also, for the more general distribution
P>(hi − h̄)�exp[−c((hi − h̄)/w)δ], the approach to the FTG limit distribution
would be very slow and the corresponding maximum fluctuations would scale as
∼[ln(N)]1/δ [53,61,62], as opposed to (31).

In Fig. 8(b) we show the average of the largest fluctuations above the
mean, ∆max, for the simulated PDES time horizon. The figure confirms that
for large enough N (when 〈w2〉 essentially becomes system-size independent)
∆max increases logarithmically with the system size, according to (31) [Fig. 8(b].
Simulation results for the actual PDES scheme also indicate [62] that the largest
deviations below the mean, ∆min = h̄ − hmin, and the maximum separation,
∆ = hmax− hmin, scale the same way as ∆max, i.e., diverge logarithmically with
the system size. Note, that similar to the width and the utilization, the extremal
height fluctuations are also self-averaging [53,62].

The implication of these findings is that while the width becomes finite
for SW-synchronized virtual times, any node can exhibit fluctuations of size
O(ln(N)) in its local simulated time (related to the local memory need). We
refer to this property as “marginally” scalable for the measurement phase (due
to the weak logarithmic divergence). This property still ensures synchronization
in a practical sense for the SW-synchronized PDES scheme with millions of PEs.
Note, that this logarithmic system-size dependence of the extreme fluctuations
is generic to coupled multi-component system, where some local relaxational
dynamics is extended to a SW network [53,62].
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4 Summary

Based on a mapping [25] between the evolution of the virtual time horizon for the
basic conservative PDES scheme [11,12] and kinetically grown non-equilibrium
surfaces [28], we constructed a coarse-grained description for the scalability and
performance of such large-scale parallel simulation schemes. These schemes can
be applied to large spatially extended systems with short-range interactions and
asynchronous dynamics. The one-site-per PE basic PDES was shown to exhibit
KPZ-like kinetic roughening. This scheme is scalable in that the average progress
rate of the PEs approaches a non-zero value. The spread of the virtual time
horizon, however, diverges as the square root of the number of PEs, leading to
“de-synchronization” and difficulties in data management.

Universality arguments, and actual PDES simulations suggest [31], that the
above characteristics generically hold for any underlying system with short-range
interactions for any finite number of sites per PE implementations. Possible
idling due to the conservative synchronization rules and actual communication
times can be greatly suppressed by each PE carrying a large block of sites [11,
12], yielding encouraging values for the utilization for actual implementations [8].
When the PEs carry many sites, however, the saturation value of the width can
become extremely large. More precisely, there is an additional fast-roughening
phase for early times when the evolution of the time horizon corresponds to
random deposition [31]. Subsequently, it will cross over to the KPZ growth regime
and finally saturate. This further motivates the need for some sort of extra
synchronizations to suppress the roughness of the time horizon.

Our goal here was to achieve synchronization without any global interven-
tion. We constructed a specific version of the SW network, where each PE was
connected to exactly one other randomly chosen PE. The extra synchroniza-
tional steps through the random links are merely used to control the width. The
virtual time horizon for the SW-synchronized PDES scheme becomes “macro-
scopically” smooth and essentially exhibits mean-field like characteristics. The
random links, on top of a regular lattice, generate an effective “mass” for the
propagator of the virtual time horizon, corresponding to a nonzero correlation
length. The width becomes finite, for an arbitrary small rate of synchronization
through the random links, while the utilization remains nonzero, yielding a fully
scalable PDES scheme. The former statement is only marginally weakened by
observing that the extreme fluctuations in the time horizon can exhibit loga-
rithmically large values as a function of the total number of PEs. The above
predictions of the coarse-grained PDES model were confirmed by actually “sim-
ulating the simulations”.

The generalization when random links are added to a higher-dimensional
underlying regular lattice is clear: since our construction of the SW network
(“hard” version) on a one-dimensional regular substrate is already mean-field,
in higher dimensions it will be even more so [44] (i.e., the critical dimension of our
SW network is less than one). Note that synchronizability on scale-free networks
[45,63] was also studied recently. The results indicate that a PDES scheme is
marginally scalable if the communication topology between the PEs is a scale-
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free network [35]. The implication of this finding is that the internet, which is
already exploited for distributed computing for mostly “embarrassingly parallel”
problems through existing GRID-based schemes [16,17], may have the potential
to accommodate efficient complex system simulations (such as asynchronous
PDES) where the nodes frequently have to synchronize with each other.

The above construction of a fully scalable algorithm for simulating large
systems with asynchronous dynamics and short-range interactions is an example
for the enormous “computational power and synchronizability” [20] that can be
achieved by SW couplings. The suppression of critical fluctuations of the virtual
time horizon is also closely related to the emergence of mean-field-like phase
transitions and phase ordering in non-frustrated interacting systems [1,64–70].

Recent theoretical work also supports [43,44,71] that systems without inher-
ent frustration exhibit strict or anomalous mean-field characteristics when the
original short-range interaction topology is modified to a SW network.
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45. Réka Albert and Albert-László Barabási, Rev. Mod. Phys. 74, 47 (2002).
46. H. Guclu, G. Korniss, M.A. Novotny, and Z. Toroczkai, in preparation.
47. A.A. Middleton, Phys. Rev. Lett. 68, 670 (1992).
48. M.B. Hastings, private communications (2003).
49. R.A. Fisher and L.H.C. Tippett, Proc. Camb. Philos. Soc. 24, 180 (1928)
50. E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958).
51. Extreme Value Theory and Applications, edited by J. Galambos, J. Lechner, and

E. Simin (Kluwer, Dordrecht, 1994).
52. Y. Rabani, A. Sinclair, and R. Wanka, Proceedings of the 39th Annual Symposium

on Foundations of Computer Science (IEEE Comput. Soc, Los Alamitos, CA, 1998)
pp. 694-703.

53. H. Guclu and G. Korniss, arXiv:cond-mat/0311575 (2003).
54. S.T. Bramwell, P.C.W. Holdsworth, and J.-F. Plinton, Nature 396 552 (1998).
55. S.T. Bramwell et al., Phys. Rev. Lett. 84 3744 (2000).
56. S.T. Bramwell et al., Phys. Rev. E 63 041106 (2001).
57. T. Antal, M. Droz, G. Györgyi, and Z. Rácz, Phys. Rev. Lett. 87, 240601 (2001).
58. S. C. Chapman, G. Rowlands, and N. W. Watkins, Nonlinear Processes in Geo-

physics 9, 409 (2002); arXiv:cond-mat/0106015.
59. V. Aji and N. Goldenfeld, Phys. Rev. Lett. 86, 1007 (2001).
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Abstract. We consider the behavior of various systems on a small-world network near
a critical point. Our starting point is a different, nonrandom system with combined
short- and long-range interactions. We analyze this model and find that the critical be-
havior is mean-field in general, with mean-field amplitudes that depend in an anomalous
way on the strength of the long-range interaction. We then compare this model to the
original small-world model, and derive a general criterion which determines when the
two models have the same scaling behavior. The criterion can be applied to a variety
of equilibrium statistical mechanics models as well as to various non-equilibrium pro-
cesses. Finally, we apply these results to the specific case of the Edwards-Wilkinson
equation. There, we find that the mean-field behavior is valid for d > 2 dimensions,
but that for d ≤ 2 dimensions there is anomalous scaling.

1 Introduction

The study of systems on networks [1] is a very general field. The systems studied
have included both equilibrium systems, such as Ising or XY models or percola-
tion problems, and non-equilibrium processes, such as epidemic spreading. The
networks themselves can be any general collection of nodes and vertices. How-
ever, one particularly important class of networks is the small-world network
model [2]. The purpose of this paper is simply to show that a wide variety of
systems on the small-world can be described by a combination of mean-field
theory with known results in scaling theory.

The small-world network model is a particular network model that combines
both long-range and short-range aspects, and interpolates between regular lat-
tices and random graphs. In this model, a regular lattice is modified by either
randomly “re-wiring” links or else by simply randomly adding long-range links.
We will choose in general the latter case: adding links to a regular lattice. The
model has some notion of locality, as most of the links remain the same as that
of the original underlying lattice. This leads to clustering in the system: with an
underlying square lattice, for example, if there is a path from node i to node j
to node k to node l, then there is often a direct path from node i to node l, in
the case that the 4 given nodes lie around a plaquette on the lattice. However,
this model also includes the “small world effect”, that the average path length
between sites on the network scales only as the logarithm of the network size.
While many other networks also possess this small world effect, throughout this
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paper we consider only the specific case with long-range links added to a regu-
lar lattice, referring for brevity to this network, and to various systems on this
network, simply as the small-world model.

To define the small-world model, one considers all pairs of nodes. Then,
with probability p/V , where V is the total number of nodes in the system,
an additional long-range link is added connecting those two nodes. Thus, in a
region of linear size l on the original lattice, such that pld ≈ 1, one expects to
find a long-range link. This already gives some indication that at short distances
the model is described by the local behavior of the underlying lattice, while on
long length scales the model becomes highly connected and some kind of mean-
field theory will take over. However, we will see below a crucial difference: for
many models of equilibrium statistical mechanics the length scale at which this
crossover occurs is much larger than l, as the number of long-range links in the
given length scale will be much larger than unity.

Equilibrium statistical systems have been well studied on small-world systems
[3–6], with traditional mean-field critical exponents being typically observed.
This contrasts with the behavior on scale-free networks [7,8]; for scale-free net-
works the absence of critical fluctuations still leads to mean-field behavior, but
the mean-field exponents in this case typically differ from the traditional mean-
field exponents found in systems with finite connectivity. We will consider only
the first case, the small-world case.

However, the presence of quenched randomness makes the small-world model
difficult to treat analytically. Thus, in the next section, we thus first consider a
different model which is easier to handle, lacking quenched randomness [9]. In-
stead of a fixed set of long-range links connecting pairs of sites with probability
p/V , we will connect every site to every other site by weak links of strength p/V .
We will refer to this model as the long-range model. In many cases, depending
on inequality (11) below, the long-range model gives the same universal critical
behavior as the small-world model, thus explaining the critical phenomena in
the small-world system. This inequality will play the role of a modified Harris
criterion [10] for the small-world system. We show the existence of mean-field
critical behavior in the long-range model, albeit with anomalous exponents de-
scribing the width of the critical region and various mean-field amplitudes. These
anomalous exponents can complicate the interpretation of numerical data. Fi-
nally, we will consider a non-equilibrium case. We will find that the stationary
statistics of the non-equilibrium case are described by a very similar theory to
that in equilibrium, while the relaxation to a stationary state can be described
by a branching process.

Further, in some cases, the long-range model may be more appropriate than
the usual small-world model. In the spread of a disease, for example, people
tend to spread the disease to those geographically nearby (the regular lattice).
There is a chance of a long-range spread of the disease, if, for example, a given
person travels a long distance, typically by air. However, these links are not
fixed. A given person may spread a disease from one geographical region to
another geographical region by travelling by air. However, the next time a contact
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is formed between people in these two different geographic regions, it is very
unlikely that it will be the same person responsible. Thus, a slight probability
of long-range contact between any two people may be a better description than
a set of fixed long-range links between people, so that at the level of people, the
long-range model is more appropriate. At the level of larger social groupings,
such as cities, fixed links may become a more appropriate description than the
long-range model: certain cities are major hubs for air travel and thus are exposed
more to long-range contact than others.

The results in the first section will apply to a wide variety of specific systems.
In the next section, we will consider a specific system: the Edwards-Wilkinson
equation. The study of this equation will exemplify our criterion (11) for the
equivalence of the small-world and long-range models, as we will see that it pro-
vides a rare case in which the criterion fails [11]. There are a number of reasons
to study this equation: on the theoretical side, the equation is linear, simpli-
fying the analysis, but the randomness still leads to interesting properties. On
the practical side, the scaling properties of the EW model on regular or random
networks are directly relevant to the scalability and synchronizability of paral-
lel discrete-event simulations (PDES) [12,13]. In PDES schemes each processing
element performs a series of update attempt. A successful update leads to an
advance of the processing elements simulated time [14,15]. There is some ran-
domness in the rate at which the simulated time advances compared to real time.
Further, neighboring processing elements synchronize with each other: a given
processing element cannot get too far ahead of the elements with which it in-
teracts. This need for synchronization between neighboring processing elements
leads to a Kardar-Parisi-Zhang (KPZ)-like kinetic roughening [16,17] of the sim-
ulated time horizon [12,18]. For a one-dimensional chain or ring of processing
elements, the steady-state performance of the PDES scheme is governed by the
EW Hamiltonian [12]. In particular, for V processing elements, the width of the
simulated time horizon diverges as V 1/2, seriously hindering efficient data collec-
tion and state saving [13,19]. Since scalable data management crucially depends
on the finiteness of the width of the time horizon (the spread of the progress of
the individual processing elements), one must suppress the diverging fluctuations
of the simulated time horizon. As an alternative to costly and frequent global
synchronizations among the processing elements, an autonomous small-world
synchronization scheme was demonstrated to work [13]. In this scheme synchro-
nization also takes place between processing elements which are connected by
long-range links on the small-world topology. This finding provided another con-
crete example for synchronizability in generalized multi-agent systems facilitated
by a small-world network [2,20].
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2 Long-Range Versus Small-World

2.1 Long-Range Model

The basis for many results in this paper is the long-range model. To define this
model, we again start with a regular lattice of V sites in d dimensions. Rather
than adding long-range links with probability p, we give each site of the lattice
a weak coupling, of order p/V , to every other site in the lattice [21]. We will
find that many results can be obtained on this system by combining mean-field
with standard renormalization group techniques. It is interesting to compare this
model to a related mean-field solution of path lengths on a small-world network
[22].

In many cases this model will enable us to extract the scaling properties of
the small-world model. Our general strategy will be to study the case of small
p. Locally, there is a clear distinction between the small-world and long-range
models: a given site in the small-world network either has a long-range link or
it does not. However, looking at large regions containing many links we may
expect that the random fluctuations in the number of links in the small-world
network become unimportant. As p becomes small, we will find that there is
a universal behavior controlled by these large regions, such that the details of
the local interaction become unimportant, and such that the small-world and
long-range models often coincide.

2.2 Equilibrium Statistics

In this subsection, we consider models from equilibrium statistical mechanics.
Generally, we will consider models with uniform, ferromagnetic couplings, such
as Ising models, XY models, etc..., as our approach will be suited to cases in
which the long-range interactions can be handled by introducing a single mean-
field, corresponding to an average magnetization. However, it may be possible
to handle certain frustrated models. For example, a model with ferromagnetic
short-range interactions and antiferromagnetic long-range interactions can again
be handled by introducing a mean-field. Models with spin-glass interactions may
also be amenable to these techniques using the replica trick. These possibilities
will not be considered below.

The models we consider can be represented by introducing a field φ(x), where
x labels lattice sites and where φ has n = 1, 2, . . . components, with a partition
function

Z =
∑

{φ}
exp [−S[φ]] , (1)

where S = E/kT is a statistical weight for a configuration of energy E at
temperature T .

For a model on a regular d-dimensional lattice, S[φ] = Slocal[φ], where
Slocal[φ] includes only short-range interactions. We refer to this as the local
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system. We choose instead for the long-range model a statistical weight with
additional long-range couplings of strength p/V :

S[φ] = Slocal[φ]− p

2V

∑

x1,x2

φ(x1) · φ(x2). (2)

We neglect the temperature dependence of the second term on the right-hand
side of (2) in what follows, as it leads to corrections to physical quantities which
are higher order in p. The temperature dependence of S[φ] will be contained
completely within Slocal[φ].

Now, decouple the long-range interaction to find

Z =
∫

Rn

dnh exp
[
−V h

2

2p

]
Z(h), (3)

where h has n components and where

Z(h) =
∑

{φ}
exp

[
−Slocal[φ] + h ·

∑

x

φ(x)

]
. (4)

Here, Z(h) is equal to the partition function of the local system in the presence
of a magnetic field, h. Defining h = |h|, then Z(h) = Z(h), as the value of the
partition function does not depend on the direction of h.

For p large, the long-range interaction outweighs the short-range interaction,
and the system can be approximately solved by mean-field theory. As mentioned
above, we consider precisely the opposite case: when p is small. This is the only
case in which we expect the dependence of physical quantities, such as the specific
heat, on p to be universal. Then, the critical point of the long-range system, T̃c,
is close to the critical point of the local system, Tc. Thus, we can use scaling laws
for the local system to find the behavior of various physical quantities. Define the
magnetization m = |m|, where m = (1/V )

∑
x φ(x). Then, the magnetization,

m, obeys m(T = Tc, h) = Amh
1/δ, defining the critical exponent δ. For T > Tc,

the susceptibility χ obeys χ(T, h = 0) = A+
χ |T − Tc|−γ . In general, we can write

a scaling function: m = h1/δf((T − Tc)h−1/(δβ)). For h >> (T − Tc)δβ , we use
the first result m(T = Tc, h) = Amh

1/δ, while for h << (T − Tc)δβ , we use the
second m(T = Tc, h) = A+

χh|T − Tc|−γ − Bχh3|T − Tc|−γ−2δβ , where we have
added the h3 term in the expansion of m.

The magnetization is defined by ∂lnZ(h)/∂h = mV . Thus,

Z(h) = Z(0) exp




h∫

0

dh′m(h′)V



 . (5)

We now consider Z(h) in two different limits, depending on whether h is much
greater or much smaller than (T − Tc)δβ .

We first consider the case of T near Tc so that h >> (T − Tc)δβ . Then, the
dominant contribution to (5) arises from h′ >> (T − Tc)δβ and thus (3) gives



282 M.B. Hastings and B. Kozma

Z = Z(0)
∫

Rn

dnh exp
[
−V h

2

2p
+
AmV h

1+1/δ

1 + 1/δ

]
. (6)

Since V is taken large, we can use a saddle point to arrive at h = (pAm)δ/(δ−1),
or

m = Am(pAm)1/(δ−1). (7)

The correlation length ξ of the local system in the presence of this field is propor-
tional to m−ν/β , and hence diverges as p → 0. This correlation length sets the
scale at which the local lattice is important. Beyond the correlation length, the
correlations in the long-range system are controlled by the averaged field h, so
that 〈φ(0) ·φ(x)〉 approaches m2 for x >> ξ. Up to this length, the short-range
system controls the correlations, and the correlation function 〈φ(0) · φ(x)〉 has
a power law decay.

We have seen that at T = Tc, the system has a net magnetization, and
thus Tc < T̃c. To study the transition itself, we now consider the second case,
h << (T − Tc)δβ . Now, (3) and (5) give

Z = Z(0)
∫

Rn

dnh exp

[
−V h

2

2p
+
A+
χV h

2|T − Tc|−γ
2

− BχV h
4|T − Tc|−γ−2δβ

4

]
.(8)

This equation can again be studied using a saddle point. The term quadratic in
h changes sign at the critical point T̃c, determined by

T̃c − Tc = (pA+
χ )1/γ . (9)

One finds that m = h = 0 for T > T̃c. This formal determination of the modified
critical temperature can be expressed in a much more physical manner: the
uniform long-range links are equivalent to studying the system in a net field h,
where h is determined self-consistently by h = pm. For a small field |h|, the
magnetization is determined by the susceptibility: m = χh + · · · , where the
· · · represent terms of order h3 and higher. Combining these two results we find
h = pχh + · · · . For pχ < 1, this equation cannot be satisfied self-consistently
with non-zerom: the field h does not produce sufficient m to lead to the given h.
For pχ > 1, however, the response to the applied field h exceeds the field h itself,
leading to a non-vanishingm. Thus, we identify the critical point by the criterion
pχ = 1. This self-consistent calculation is valid in the large V limit when m has
no fluctuations; thus, it is equivalent to the saddle-point approximation above.

Slightly below the critical point we find h =
√
T̃c − T

√
γA+

χ

Bχ
(T̃c − Tc)δβ−1/2,

and a magnetization given by (using the scaling law δβ − γ = β [23])

m =
√
T̃c − TA+

χ

√
γA+

χ

Bχ
(T̃c − Tc)β−1/2. (10)
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Thus, the magnetization behaves as m = Ã
√
T̃c − T , with Ã ∝ p(β−1/2)/γ . If

the local system is described by mean-field theory, then β = 1/2 and A does
not diverge as p → 0. In other cases, β < 1/2, and the mean-field amplitude
Ã diverges for small p. The specific heat of the system can be obtained by
differentiating the partition function (8) twice with respect to temperature. The
partition function Z(0) is analytic in T at T = T̃c, while the integral over h is not,
leading to a specific heat jump at T = T̃c equal to (γA+

χ |T̃c−Tc|−γ−1)2/(2Bχ|T̃c−
Tc|−γ−2δβ) ∝ |T̃c − Tc|2δβ−γ−2 = |T̃c − Tc|−α. Thus, the jump in specific heat
is of order |T̃c − Tc|−α; the specific heat of the local system at temperature T̃c
is at the same order. Therefore, if we examine the behavior of the specific heat
approaching the critical point, we find that initially the specific heat increases
in a manner controlled by the local system. Then, the specific heat jumps by an
amount which is comparable to the specific heat immediately above the transition.
This behavior of the specific heat jump is seen in numerical studies [6].

We now consider the width of the mean-field critical region. Let us first
check that the mean-field critical region extends at least to Tc. To check this, we
extrapolate the result (10) to T = Tc, and we observe, using various exponent
equalities, that the power of p in the result is consistent with the power of
p obtained in (7). Next, let us consider how far the mean-field critical region
extends below Tc. For T < Tc, the average magnetization of the local system
in the absence of a field behaves as |Tc − T |β , and the susceptibility is given by
χ = A−

χ |Tc−T |−γ . In the long-range system, this magnetization produces a field
h ∝ p|Tc − T |β , which in turns feeds back and increases the magnetization an
amount of order χh = p|Tc − T |β−γ . For |Tc − T |γ >> p, this effect is negligible
compared to the averaged field itself, |Tc − T |β . Thus, at such temperatures
the long-range interactions have negligible effect on the magnetization and so
the mean-field critical behavior only extends to |Tc − T | ∝ p1/γ ∝ |T̃c − Tc|.
Therefore, for small p, the width of the mean-field critical region is small. The
scaling arguments above all rely on this width becoming narrower than the width
of the anomalous critical region in the local system, in which case both mean-field
and anomalous scaling will be seen in the same system.

2.3 Effect of Randomness

In the small-world model one adds a quenched set of strong links, while the long-
range model lacks randomness and has links of strength p/V . We now identify
a criterion, (11), for when it is justified to ignore the quenched nature of the
links in the small-world model, at least for determining the universal scaling of
quantities with p, as in (9) and (10). The strategy is to consider the long-range
model without randomness, and then to add the effects of randomness in the
small-world model as a perturbation, determining when it is self-consistent to
ignore randomness for small p.

At T̃c, the correlation length of the local system is ξ ∝ (T̃c − T )−ν ∝ p−ν/γ .
Thus, within a correlation volume, there are p−νd/γ sites. In the small-world
model, each site coupled with a long-range link feels an average field proportional
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to m, and also feels statistical fluctuations about this field. These effects lead to
perturbations in the two relevant variables, the magnetic field and temperature,
which must be treated carefully.

Consider first the average field acting on a correlation volume due to the long-
range links. If sites in the correlation volume are chosen instead with probability
p to have long-range links, then an average of p1−νd/γ sites are chosen. The
exponent 1 − νd/γ can be rewritten using Fisher’s equality: γ = ν(2 − η) [24].
Thus, the average number of sites scales as p1−d/(2−η). However, in general, the
correlation function of the field φ between two sites separated by a distance r
decays as 1/rd−2+η. In order for this indeed to describe a decaying correlation
function, we need d−2+η > 0, which implies that 1−d/(2−η) = 1−νd/γ < 0.
Thus, the number of sites chosen in a correlation volume, p1−νd/γ diverges as
p→ 0. Then, there are a large number of sites with long-range links within each
correlation volume and so the sample-to-sample fluctuation in the number of
such sites within each correlation volume is negligible in the small-world model.
Thus, the sample-to-sample fluctuation in the average field are negligible for most
systems. There are some exceptions, however, in systems in which 1− νd/γ ≥ 0.
One example is the one- and two-dimensional Edwards-Wilkinson model, which
will be discussed in more detail in the next section. Another example is the one-
dimensional Ising model near its zero-temperature critical point, which will also
be discussed below.

Next consider the statistical fluctuations in the field, which reduce the corre-
lation of the given site with its neighbors. This effectively raises the temperature
of a site with a long-range link. Consider the number of sites with long-range
links. The root mean square sample-to-sample fluctuation in the number of such
sites scales as (pξd)1/2, and thus the sample-to-sample fluctuation in the tem-
perature averaged over a correlation volume scales as (p/ξd)1/2 ∝ p1/2+νd/(2γ) ∝
|T̃c − Tc|γ/2+νd/2. Compare this to the difference in temperatures, T̃c − Tc. As
long as

γ/2 + νd/2 > 1, (11)

the sample-to-sample fluctuation in temperature is negligible as p → 0. Equa-
tion (11) resembles the Harris criterion [10] for the relevance of disorder, with
an additional term γ/2 on the left-hand side. For any model where (11) holds
(this includes most unfrustrated models), fluctuations in field and temperature
are both negligible and the scaling of both T̃c−T and Ã with p will be the same
in the small-world and long-range models.

Intuitively, we expect that the transition temperature in the long-range model
will be higher than that in the small-world model: this is definitely true if we
ignore the local couplings, and consider only the long-range links. Therefore,
in cases when (11) does not hold, T̃c − Tc should scale as at least as large a
power of p in the small-world model as it does in the long-range model. This,
in fact, is what is found below in the Edwards-Wilkinson model: the effective
mass, defined below, scales as a larger power of p in the small-world model than
in the long-range model. For a further study of the effect of randomness, it was
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shown elsewhere [9] that the long-range model provides an upper bound to the
free energy of the small-world model.

2.4 Comparison to Numerics

An important work was a numerical calculation of some of these quantities,
looking for the shift in the transition temperature [6]. In that paper, a different
scaling argument was made for the shift, T̃c − Tc ∼ p1/(νd). This is the tem-
perature at which a correlation volume includes roughly one long-range link.
However, we have argued that the shift in transition temperature actually scales
as p1/γ , which is less than p1/(νd) as p→ 0. The difference arises since one long-
range link is not sufficient to magnetize an entire correlation volume; several
such links are required.

The numerical results in two dimensions are consistent with a shift in transi-
tion temperature scaling as p1/γ = p0.57.... The numerical results in three dimen-
sions indicate a shift scaling as p0.96, while taking γ = 1.2396 from ε-expansion
[25] gives 1/γ ≈ 0.81. This indicates some discrepancy with the numerical re-
sults. However, in the numerical study [6], it was argued that their results do not
yet involve sufficiently large lattices to obtain accurate scaling; certainly, p0.81

is closer to the observed scaling than p1/(νd) ≈ p0.53 is.
These two- and three-dimensional Ising systems satisfy the inequality (11),

as do all other O(N), N ≥ 1, models in two or more dimensions. In the next
section, we consider the Edwards-Wilkinson equation which does not satisfy this
inequality in one and two dimensions.

Finally, it is worth mentioning various systems with zero temperature phase
transitions, such as the one-dimensional Ising model. In the absence of long-range
links, this model has no phase transition at any finite temperature. However, the
long-range links do lead to a finite temperature phase transition. Unfortunately,
the long-range model does not provide a good approximation in this case. Con-
sider a single long-range link between sites x1, x2 with spins φ(x1), φ(x2) = ±1.
which adds a term eβφ(x1)φ(x2) to the partition function. In this case the term
diverges at the critical point for small p (p → 0 implies the critical β̃c → ∞),
so that we cannot average the long-range interactions over large numbers of
sites. However, there is still some form of mean-field theory available, as the
phase transition temperature is sufficiently low that there are a large number of
long-range links in a correlation length [3].

In another case, the case of the two-dimensional XY model, with N = 2, the
system has no spontaneous magnetization at any non-vanishing temperature.
However, there is a phase transition, the Kosterlitz-Thouless [26] transition,
to a phase with a divergent susceptibility. This transition happens at a finite
temperature, and in this case the scaling theory we have developed can be used.
Approaching the phase transition from above, the susceptibility diverges as χ ∝
exp[c(T − Tc)−1/2], where c is a constant [27]. Applying the criterion pχ = 1 for
the critical point, we find

T − Tc = c/ ln(p)2. (12)
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2.5 Non-equilibrium Dynamics

We now consider the generalization to a non-equilibrium process, the contact
process [28], in which each site is marked either infected or susceptible. An
infected site becomes susceptible at unit rate, while an infected site can turn a
neighboring susceptible site infected at a rate λ/q, with q the lattice coordination
number. The state with all sites susceptible is absorbing. However, above a
critical λc, if a single infected site is placed in an infinite lattice of susceptible
sites, there is a non-zero probability of the epidemic persisting for all time. We
modify the model as follows: each susceptible site can be infected by any other
infected site, not necessarily a neighbor, at a rate equal to p/V .

We start by recalling some exponents in the local case. For λ > λc, there is an
average density, ρ ∝ |λ−λc|β . In the presence of a source, where susceptible sites
become infected at a rate h, the density ρ(λ = λc, h) = Aρh

1/δh . Also, consider
the infection spreading from a single source in the local model. At λ = λc, the
survival probability of the infection after time t, P (t) obeys P (t) = Apt

−δ, The
number of infected sites is a random variable, n(t); the average number of such
sites obeys n(t) = Ant

η. The radius of the infection scales as tz/2. For λ < λc,
the infection dies out exponentially, with an asymptotic survival probability
P (t) ∝ e−t/τ , with τ ∝ |λc − λ|−ν‖ . This gives rise to a divergent susceptibility:
in the presence of a source h at λ �= λc, the susceptibility, χ ≡ ∂hρ at ρ = 0,
obeys χ(λ, h = 0) = Aχ|λc − λ|−γ .

Then, the general development in the stationary state of the long-range model
will be very similar to the equilibrium case. The dynamics in the long-range
model can be described by that of the local model with an additional time-
dependent source h(t) = pρ(t). In the stationary state, in the large V limit, the
time-dependence of h(t) can be neglected, giving rise to a set of self-consistent
equations for h.

First, we consider λ = λc. Then, the density obeys h = pAρh
1/δh , or h =

(pAρ)δh/(δh−1) and thus

ρ = Aρ(pAρ)1/(δh−1). (13)

Equation (13) should be compared to (7). It implies that the transition to
a spreading epidemic happens at λ = λ̃c < λc. We can find λ̃c by using the
susceptibility and a self-consistent calculation of the density of particles: in the
presence of a source h in the local model,

ρ = Aχ|λc − λ|−γh− · · · , (14)

where the ... represent terms of order h2 and higher. The source is due to the long-
range interaction, and hence h = pρ. Thus, for pAχ|λc−λ|−γ = 1, (14) is obeyed
to linear order. For larger λ, the response to the field exceeds the field at linear
order, and thus the higher order terms in (14) are required, indicated that there
is a non-vanishing net density. This identifies λ̃c by λc − λ̃c = (pAχ)1/γ . For λ
slightly above λ̃c, following the same steps as in the equilibrium case leads to the
same result as (10), except that the role of magnetizationm is replaced by density
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ρ and
√
T̃c − T (T̃c−Tc)β−1/2 is replaced by (λ̃c−λ)(λ̃c−λc)β−1. The transition

is again mean-field. Thus, the stationary results in this non-equilibrium model
are described by the same scaling theory as in the equilibrium models. with one
difference being that the mean-field density ρ has a linear, rather than square-
root, dependence on the distance from the critical point. This is due to the
appearance of terms of order h2 in the average density as a function of field,
while in the equilibrium case the magnetization has terms of order h, h3 and
higher.

However, the spread of infection starting from a single source is described
by an interesting branching dynamics. This dynamics describes the approach
to the stationary state. Consider the dynamics in the long-range model, with
λ = λc, with a single source for an infection. This source grows as described,
with the given P (t), n(t). However, the local outbreak starting from that source
can produce other local outbreaks elsewhere, via the long-range links, at a rate
equal to p times the number of infected sites. For p small, the number of infected
sites n(t) will be large before such an event, and thus the fluctuations in the n(t)
are described by a random process with a universal distribution. In the large V
limit, at fixed t, each new local outbreak produced via a long-range link is well
separated in space from the other local outbreaks. Thus, we can describe the
dynamics of the spread from a single source simply: there is initially one local
outbreak, created at time 0, which survives at time t with probability P (t), and
which produces additional local outbreaks at a rate equal to pn(t). Each local
outbreak, created at time t′, evolves independently, surviving with probability
P (t−t′), and producing additional local outbreaks with rate pn(t−t′). This fully
describes the dynamics via a branching process. For λ �= λc, this description of
the dynamics remains valid with a changed P (t) and distribution of n(t).

At short times, the average number of infected sites in this dynamics is equal
to n(t). At long times, the average number of infected sites grows exponentially
[29]. To describe this exponential growth, realize that at long times the number of
local outbreaks becomes large. If s(t′) describes the number of local outbreaks
started at time t′, then the average number of particles at time t is equal to∫ t
0 dt′ s(t′)n(t− t′), and thus on average s(t) = p

∫ t
0 dt′ s(t′)n(t− t′). The ansatz

s(t) = eαt gives

α = [AηpΓ (1 + η)]1/(1+η). (15)

Each local outbreak takes a volume of order tdz/2. Eventually, at sufficiently
large time, such that eαt ∼ (V/tdz/2), the individual local outbreaks start to
merge, and the dynamics of different local outbreaks become coupled. This time
t is of order ln(V ).

Up to this time t, the system is approaching its stationary state, and the
long-range and small-world models describe definitely dynamics. Consider what
happens after the first local outbreak produces a second local outbreak. At some
point, the second local outbreak will again infect some other site via a long-range
link. In the long-range model, it is unlikely (vanishing probability in the limit
V → ∞) that this site will be near the first local outbreak. However, in the
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small-world model there is a fixed link connecting the two outbreaks, and they
can re-infect each other multiple times with high probability. Beyond this time
t, one approaches a stationary state with density ρ given above.

3 Edwards-Wilkinson Equation: An Example

3.1 Hard and Soft Cases

The equilibrium Edwards-Wilkinson (EW) model [30] is an interesting case in
that it does not satisfy the mean-field criterion (11) when each pair of sites is
connected with probability p/V with a link of unit strength on top of a one-
dimensional regular substrate [11]. The exponents ν, γ for this model can be
found by considering it as a Gaussian approximation to a model at a continuous
phase transition. We will see that adding a mass to the equation is equivalent
to moving above the critical temperature. Thus, the EW model on this small-
world network is expected to scaling properties (as a function of p) which differ
drastically from the mean-field version of the model in one dimension. In two di-
mensions, the criterion (11) is marginal, and we will find logarithmic corrections
to the mean-field results.

We will consider the EW model on two distinct variants of the small-world
network model. The first is the “soft” variant. This is the version considered
in the previous section, and the most commonly studied version. In this case,
random links of unit strength are added to the one-dimensional substrate with
probability p/V to each pair of sites [31–33]. In the“hard” version, each site
has exactly one random long-range link (in addition to the nearest-neighbors).
This link is connected to another randomly chosen site on the lattice, and the
strength of the interaction through the random links is p. To construct this
network, one picks a random pair of sites, and connects them. This process of
selecting pairs of sites and connecting continues; once a site is selected it is
never selected again. One motivation for studying the hard network is in its
application to scalable PDES schemes, where all processing elements are chosen
to have the same connectivity; the weak connection along the link (of strength
p) corresponds to synchronization checks along the long-range links which are
rare compared to local synchronizations [13]. A further motivation for studying
the two different networks is due to their different scaling properties; the soft
network, as we will see, has anomalous scaling, while the hard network does not.
The terminology “soft” and “hard” is due to the absence or presence of a gap
in the excitation spectrum, respectively [33], discussed below.

We consider the equation (for a single realization of the small-world)

∂thi = hi+1 + hi−1 − 2hi −
V∑

j=1

Ĵij(hi − hj) + ηi(t) , (16)

where hi is the surface height, ηi(t) is a delta-correlated Gaussian noise with
variance 2 (without loss of generality), and we have dropped the t-dependence
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from the argument of hi for brevity. The symmetric matrix Ĵij represents the
quenched random links on top of a one-dimensional lattice of length V with
periodic boundary conditions. For the hard version of the small-world Ĵij has
exactly one non-zero element (being equal to p) in each row and column. This
construction results in

∑
l Ĵil = p for all i. For the soft version of the small-world,

each element of Ĵij (e.g., above the diagonal) is 1 with probability p/V and zero
otherwise. In this case [

∑
l Ĵil] = p, where [. . . ] denotes the average over the

network disorder: the average coordination number is p and each bond has unit
strength. The number of long-range bonds emanating from a given node on the
network has a Poisson distribution.

We write (16) as ∂thi = −∑
j Γ̂ijhj+ηi, where Γ̂ = Γ̂ o+Û . Here, Γ̂ o is minus

the Laplacian of the original one-dimensional ring: Γ̂ o = −δi,j−1− δi,j+1 +2δi,j .
The matrix Ûij = −Ĵij + δij

∑
l Ĵil is minus the Laplacian on the random part

of the network.
As a basic physical observable, we focus on the behavior of the width, which

probes the generic collective properties of the underlying networks by providing
a sensitive measure of synchronization [13]. The operator Γ̂ has a zero mode,
corresponding to a uniform shift in the surface: hi → hi + const. It is useful
to introduce the projection operator: for all i, j, define Pij = δij − 1/V . This
operator projects onto the vector space orthogonal to this zero mode. For a given
realization of the small-world network the average surface width characterizing
the roughness is equal to

〈w2〉V ≡
〈

1
V

V∑

i=1

(hi − h̄)2
〉

=
1
V

V−1∑

k=1

1
λk

=
〈

1
V
hiPijhj

〉
. (17)

Here h̄=(1/V )
∑V
i=1 hi is the mean height, 〈. . . 〉 denotes an ensemble average

over the noise in (16), and λk are the non-zero eigenvalues of the real symmetric
coupling matrix Γ̂ . We will quote numerical results [11] which relied on the
exact diagonalization [34] of the coupling matrix Γ̂ for a given realization of
the network. Then, from the eigenvalues of Γ̂ , the right side of (17) was used to
obtain the width. Finally, the disorder-averaged (denoted by [. . . ]) width [〈w2〉V ]
was obtained by averaging over a large number (ranging from 100 to 1000) of
realizations.

To connect to the previous section, we consider the criterion (11) for various
dimensions d for the EW model on the soft version of the network. As an approxi-
mation to the soft network, we consider instead the equivalent long-range model,
where in addition to the nearest-neighbor connections, each site is coupled to all
others with strength p/V . This yields the equation of motion

∂thi = hi+1 + hi−1 − 2hi − phi + ph+ ηi(t) ≡ −Γ̂ lrij hj + ηi(t). (18)

The operator Γ̂ kr has a zero mode. However, in the space orthogonal to
the zero mode, the equation is equivalent to a massive equation of motion:
∂thi = −(2hi − hi+1 − hi−1) − phi + ηi(t), where the projection to the sub-
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space orthogonal to the zero mode permits us to ignore the term ph. Introduc-
ing the mass p leads to a correlation length ξ ∼ p−1/2, and a correlation volume
ξd ∼ p−d/2. This introduction of a mass corresponds to shifting away from the
critical temperature, and thus determines the exponent ν = 1/2. The exponent
η = 0 since this is a Gaussian model, and so γ = 1. Now, let us check if this
model is a valid description of the soft network. For the soft network, within this
volume one would have on average pξd ∼ p1−d/2 links. For d > 2 this number
diverges as p → 0; then for small p there are a large number of links leaving
the volume and the sample-to-sample fluctuation in the mass in a correlation
volume is negligible compared to the mass itself so that the trivial mean-field
behavior is expected to be valid. For d ≤ 2, the trivial behavior breaks down.
The requirement 1 − νd/γ < 0 is not satisfied in this case. The failure of this
requirement is related to the fact that 1/rd−2+η does not decay with r. We will
see the resulting divergence in a perturbative calculation. In contrast, for the
hard version of the network the density of random links is unity, resulting in
trivial mean-field scaling for all d in the p→0 limit, as there will always be a
divergent (p−d/2) number of links leaving any correlation volume.

The model also fails the criterion (11). We have seen that the critical ex-
ponents are ν = 1/2, γ = 1. The criterion νd/2 + γ/2 > 1 for the validity of
mean-field behavior is thus violated for d = 1, while d = 2 is marginal.

3.2 Perturbation Theory

We define the propagator, or Green’s function, G to be equal to Γ̂−1 in the space
of non-zero eigenvalues of Γ̂ , while G vanishes when acting on the zero mode of
Γ̂ . Thus, G = P (Γ̂ + iε)−1 (the iε is inserted so that Γ̂ + iε will be invertible).
The projection operator is inserted so that we do not need to worry about the
effect of the zero mode in what follows. The zero mode always has the same
eigenvector, independent of the disorder realization.

We now use the techniques of impurity averaged perturbation theory [35] to
study the disorder-averaged propagator [G]. The perturbative expansion of [G]
can be obtained by

[G] = Go − [GoÛG] = Go − [GoÛGo] + [GoÛGoÛGo]− · · · , (19)

where Go=P (Γ̂ o + iε)−1 is the propagator of the Laplacian on the original one-
dimensional lattice. To obtain [G] it is necessary to average this expansion over
the network disorder in Û .

To deal with only one-particle irreducible disorder-averaged diagrams, we
calculate the self-energy Σ = ([G])−1 − (Go)−1 up to next-to-lowest order for
both the soft and hard versions of the small-world. In Fig. 1, a single line denotes
the propagator Go while a double line denotes [G]. The relation between [G], Go,
and Σ is shown at the top of the figure. We will then represent Σ as a sum of
different diagrams, some of which are shown in Fig. 1.

In these calculations, a cross with no dashed lines attached is used to denote
the average over different realizations of the network of a diagonal term Ûii in
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= Σ
a)  Hard network:

b)  Soft network:

Σ = + + +... +

Σ = + +...

+...+...

[G] G
o

−

Fig. 1. Diagrams for the calculation of the Green’s function and the self-energy.

Û . A pair of crosses connected by a dashed line is used to denote an average
[ÛiiÛjj ] − [Ûii][Ûjj ], while three or more crosses connected by dashed lines are
used to denote higher cumulants. Similarly, circles connected by dashed lines
are used to denote averages of off-diagonal terms −Ĵij in V . Dashed lines can
connect both circles and crosses.

Terms in the expansion with a circle, not connected by dashed lines to other
circles, vanish as 1/V for large system size V and so may be neglected. For the
hard network, terms in the expansion with two or more crosses connected by
dashed lines vanish since there are no random fluctuations in δij

∑
l Ĵil in this

case, while for the soft network these terms do appear. In the hard network, each
power of Û comes with a power of p, while in soft network, each set of circles or
crosses connected by dashed lines comes with a power of p.

In the hard version of the network, we can proceed by expanding [G] in powers
of Û . The first diagram in Fig. 1(a) yields the lowest order result Σ = p. Then,
the representation of [G] in terms of G0, Σ gives [G] = Go−GopGo+GopGopGo−
· · · = (Σ+(Go)−1)−1. Comparing to (19), we see that this lowest order expansion
amounts to neglecting all the terms involving higher order cumulants: we have
taken [Û ] = p, [ÛiiÛjj ] = p2, . . .

Adding the second diagram yields Σ = p − p2[G]ii = p − p2/(2√Σ), where
we use the fact that, for large V , [G]ii = 1/(2

√
Σ) plus terms of order

√
Σ (see,

e.g., [36]). Here we are using the so-called self-consistent Born approximation
(SCBA). If the line in the second diagram were instead taken to be a single-
line, we would have obtained Σ = p − p2Goii. That approximation amounts to
including the second order cumulant in the average of (19) [ÛiiÛjj ] = p2 +p2δij ,
for scatterings off Û which occur successively in the expansion (19), with no
intervening scattering events. However, using the single line leads to a serious
problem: as V →∞, the propagator Goii diverges. This problem can be traced to
the failure to include intervening scattering events between the two scatterings
off Û . This is why we use the double line (SCBA). The SCBA includes intervening
scattering events, and resums a large class of diagrams. It avoids the divergence
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of Goii since for fixed p, [G]ii does not diverge as V →∞. The SCBA as shown in
the second diagram of Fig. 1(a) includes all terms in (19) with cumulants up to
second order, such that scatterings do not cross. That is, if a given term in (19)
involves scattering twice off a link on site i and twice off a link on site j, then the
scattering can occur in the order i, j, j, i or j, i, i, j, but not in the order i, j, i, j
or j, i, j, i. However, such crossing terms are higher order than those shown in
Fig. 1(a).

As an approximation to the solution of the SCBA equation Σ = p−p2[G]ii =
p− p2/(2√Σ), we can just insert the leading order result for Σ into the second
diagram to find

Σhard = p− (1/2) p3/2 + . . . , (20)

so that the higher powers of Û lead to corrections to Σ which are higher order
in p as required.

In the soft version of the network, the above procedure does not work. The
first diagram in Fig. 1(b) yields Σ = p. Inserting this result for Σ into the next
two diagrams leads to Σ = p − p1/2, so that the expansion in Û does not lead
to an expansion in p. To correct this, we start by summing up all the diagrams
involving a single link. The first terms in this sum are shown in the first pair of
parenthesis in Fig. 1(b). The infinite sum yields Σ = p(1−2[G]ii+4[G]2ii−. . . ) =
p/(1 + 2[G]ii). Solving this equation self-consistently to lowest order in p yields
Σ = p2. Physically, since the density of links is small, of order p, this first step
consists of exactly solving the interaction with a single link.

Having done this infinite summation, we can now consider another infinite
series of diagrams, starting with the last one shown in Fig. 1(b), and adding
additional diagrams where each single interaction with the given link is replaced
by two, three, or more interactions with the link, as well as diagrams in which
crosses are replaced by circles. Let us determine the order of this summation in
p, where we will use the result from the previous summation for [G]. The infinite
summation replaces the interaction with a given link with the sum: 1− 2[G]ii +
4[G]2ii − · · · = 1/(1 + 2[G]ii) ∝ p. Thus, we have resummed the scattering off of
a single link, and each link scatters only with strength p, now. The diagram has
four such scatterings, leading to a result of order p4. There is an additional factor
of p2, due to the appearance of two sets of circles/crosses connected by dashed
lines; this is the probability of finding two such links. There is a summation over
the spacing between the two impurities; this spacing is of order p−1, as this is
the scale on which [G] decays, as determined from the solution of scattering off
a single link. There is a further factor of [G]3ij from the three Green’s functions.
For two links separated by a distance of order p−1, we have [G]3ij ∝ p−3. As a
result, this sum over diagrams yields a result of order p4 · p2 · p−1 · p−3, which is
again of order p2. More complicated diagrams continue to yield results of order
p2. As a result, after this resummation, we are able to determine only that Σsoft
scales as p2, but not the exact coefficient, and not the higher order corrections:

Σsoft ∝ p2 (21)
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3.3 Two Dimensions

For d>2, Σ is asymptotically of order p for both soft and hard cases, i.e, the
systems are effectively mean-field. In the soft case, this result can be found by
the resummed expansion.

For d=2, one finds Σhard = p− · · · using Fig. 1(a). For the soft case in d = 2
the resummation of the scattering off of a single link (the first set of diagrams in
Fig. 1(b)) enables one to find a logarithmic correction to the trivial mean-field
behavior:

Σsoft = 2πp/| log(p)| − · · · . (22)

Now consider the infinite sum of diagrams starting with the last one shown in
Fig. 1(b). In d = 1, we found that this diagram was asymptotically the same
order in p as the first set of diagrams. For d = 2, we find that the resummation
of the scattering off a single link reduces that scattering strength to an amount
of order 1/| log(p)|; there are four such scatterings. There is a factor of p2 for the
two links. The separation between the two links can be of order Σ−1/2, leading
to a total area of order Σ−1 ∝ | log(p)|/p. Finally, the Green’s function G3

ij

is of order unity, with no logarithmic divergence in p, if i, j are separated by
a distance of order Σ−1/2. This gives the total power of the diagram equal to
(1/| log(p)|)4 · p2 ·Σ−1 ∝ p/| log(p)|3. As p→ 0, the contribution of this diagram
is asymptotically vanishing compared to that of (22).

Thus, Σsoft depends anomalously on p in d = 2. However, higher order cor-
rections are small, so that the system is asymptotically mean-field, albeit with
a renormalized p.

The absence of higher order corrections in d = 2 raises the possibility of an
ε-expansion for d = 2− ε. This will be considered in future work [37].

3.4 Numerics

Then, the disorder-averaged width can be found from Σ by
[〈w2〉] = [G]ii �

1
2
√
Σ

. Thus, the asymptotic small-p behavior of the width in the thermodynamic
limit is [〈w2〉]hard � 1/(2

√
p) and [〈w2〉]soft ∝ 1/p, for the respective versions of

the small-world networks. These asymptotic small-p, infinite system-size behav-
iors are indicated with the two slopes next to the numerical data [11] in Fig. 2.
In an attempt to match the behavior of the width for finite systems in the hard
network, the finite-system version of the propagator (see, e.g., [36]) was used
with the effective mass from (20). We ignored various finite-size corrections to Σ
itself, as being too complicated to be worth calculating, and also as entering only
at next-to-leading order. That is, we assumed that the system was described by
(18) with the mass p replaced by Σhard, and obtained the width for this equation
in a finite-size system. The results lead to good agreement for a wide range of p.
The inset to Fig. 3 shows the improvement of the next-to-leading order for the
hard network.
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These results indicate that for both small-world networks, the width ap-
proaches a finite value for any non-zero value of p as V→∞. In the hard net-
work, the scaling of the width approaches that of the mean-field version of (16),
while the soft network does not exhibit this scaling, as expected from the general
criterion [9].

3.5 Non-perturbative Results

The effective mass obtained perturbatively, (20) and (21) describes the average
behavior of the width of the system. However, it does not determine the eigen-
value spectrum of the system. Define the density of eigenvalues of the matrix Γ
by ρ(λ). Then, we can calculate ρ(λ) by defining [G(λ)] = P [(Γ − λ+ iε)−1] so
that ρ(λ) = −Im[Tr(G(λ))]/πV . Then, one must compute a λ-dependent self-
energy Σ(λ). To do this, all the Green’s functions appearing in the self-energy
must be replaced with G(λ). In the case of the hard network, the self-energy Σ is
only weakly dependent: the leading order term, p, does not involve any Green’s
functions in it and hence does not depend on λ. Only at next order does one find
a λ-dependence in Σ. Thus, one expects that there is a true gap in the spectrum
which is equal to p, plus higher order corrections of order p2.

To understand this better, we review some earlier results, studying the “soft”
version of the small-world network [33]. Throughout, we assume that the system
size, V is taken to infinity. Then, consider a segment of the chain of length l.
Any given site has a probability e−p of having no long-range links, and thus the
segment has a probability e−pl of having no such links. Although the probabil-
ity of these quasilinear chain segments of length l is exponentially small, they
have eigenvalues of order 1/l2 [38,39]. Summing up over large l values with the
exponential weight above yields ρ(λ) ∼ (1/

√
λ)e−cp/

√
λ for small λ [33], where

c is a constant. Therefore, the spectrum is gapless, but the density of states
vanishes exponentially fast for small λ as a result of the essential singularity in
the exponent. From the right side of (17) it follows that in the V→∞ limit, the
disorder-averaged width can be expressed in terms of the density of states as
[〈w2〉] =

∫
(1/λ)ρ(λ)dλ. The small-λ behavior of ρ(λ) determines whether the

width remains finite or diverges in the thermodynamic limit. Although there
is no gap in the spectrum, the exponentially small ρ(λ) above more than com-
pensates for the term λ in the denominator, so that the integral converges as
λ→ 0, yielding [〈w2〉]soft ∼ 1/p. This construction can be extended to arbitrary
dimension d, where we find that ρ(λ) ∼ λd/2−1e−cpλ

−d/2
. Thus, even for d > 2

where mean-field scaling of the width prevails, the spectrum remains gapless for
the soft system.

Instead, for the hard version of the network, we expect that there is indeed
a true gap of order p. Each site has one link. Considering a fixed segment of the
chain, as V→∞, there is a vanishing probability that any of these links connect
two sites in the given segment. Thus, there is a vanishing probability of finding
a segment with no long-range links leaving the segment.
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4 Discussion

We have considered the behavior of a general class of systems on a small-world
network. Our starting point was a model with combined short- and long-range
interactions. This model was solved using a combination of scaling theory and
mean-field theory. We find that the long-range interactions lead to mean-field
behavior, but with a scaling region whose width vanishes as p→ 0, as well as with
anomalous scaling of the mean-field amplitudes in p. We have then compared this
model to the original small-world model and found that in a number of situations
the same scaling behavior describes both. We have found that the description is
applicable to both equilibrium and non-equilibrium processes in the stationary
state, while the approach to the stationary state in the non-equilibrium case is
describe by a branching process. Finally, we have illustrated some of the results
with the specific example of the Edwards-Wilkinson equation.
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Abstract. This paper reviews two problems in the security of complex networks: cas-
cades of overload failures on nodes and range-based attacks on links. Cascading failures
have been reported for numerous networks and refer to the subsequent failure of other
parts of the network induced by the failure of or attacks on only a few nodes. We
investigate a mechanism leading to cascades of overload failures in complex networks
by constructing a simple model incorporating the flow of physical quantities in the
network. The second problem is motivated by the fact that most existing works on se-
curity of complex networks consider attacks on nodes rather than on links. We address
attacks on links. Our investigation leads to the finding that many scale-free networks
are more sensitive to attacks on short-range than on long-range links. Besides its im-
portance concerning network security, our result has the unexpected implication that
the small-world phenomenon in these scale-free networks is mainly due to short-range
links.

1 Introduction

Complex networks [1] such as the Internet, the electrical power grid, and the
transportation network, are an essential part of a modern society. The security of
such a network under random or intentional attacks is of great concern. Recently,
an interdisciplinary field among information science and engineering, statistical
and nonlinear physics, applied mathematics, and social science has emerged,
bringing novel concepts and approaches to the study of complex networks [2–
5]. Issues such as the characterization of the network architecture, dynamics on
complex networks, and the effect of attacks on network operation have begun to
be addressed. A central point of this review is that the flow of information and
other physical quantities in the network can be critically important for network
security. This dynamical aspect of the security problem, despite its highly prac-
tical relevance, has been only partially understood in the context of complex
networks. Here we shall review some of our initial results in this direction.

Most large natural and man-made networks are sparse and evolve in time.
Two important properties displayed by many of these networks are the small-
world [6] and scale-free [7] properties. Small-world networks are characterized by
the clustering coefficient C and the average network distance L. The former is
the probability that any two nodes are connected to each other, given that they
are both connected to a common node. The latter measures the average minimal
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Phys. 650, 299–310 (2004)
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number of links connecting any two nodes in the network. Many regular networks
have high clustering coefficients and large network distances. Random networks,
on the other hand, have small network distances and low clustering coefficients
[8]. Small-world networks fall somewhere in between these two extremes as they
have large clustering coefficients and small average network distances [6,9]. A
small-world network is then locally similar to a regular network but globally
similar to a random network. The scale-free property, on the other hand, is
defined by an algebraic behavior in the probability distribution P (k) of the
number k of links at a node. Barabási and Albert [7] have presented a model
which generates a class of scale-free networks. Their model incorporates two basic
features in the evolution of the network: growth and preferential attachment.
The former means that the number of nodes in the network increases with time
and the latter stipulates that the probability for a new node to be connected
to an existing node depends on the number of links that this node already has.
A number of other models of scale-free networks have been proposed (see, for
example, [10]).

Most existing works on the security of scale-free networks consider attacks
on nodes rather than on links ([11,12] are among the few exceptions). We believe
that attacks on links are as important for the network security as those on nodes,
and therefore deserve a careful investigation. As we argue, studying the effect
of attacks on links can provide an understanding to the fundamental question
of why scale-free networks are typically highly efficient. Roughly, the efficiency
of a scale-free network is determined by the average network distance between
nodes. It has been assumed that long-range connections are responsible for the
small average network distance observed in complex networks. In the Watts-
Strogatz model of small-world networks, the small network distances are due to
links connecting nodes that would otherwise be separated by a long distance,
i.e. long-range links [6]. The range of a link lij connecting nodes i and j is
defined to be the shortest distance between i and j when lij is removed [9].
The intuition is then that scale-free networks are much more sensitive to attacks
on long-range than those on short-range links. We show that in fact, for many
scale-free networks, the opposite is true. Thus, the small-world phenomenon in
these scale-free networks is caused by short-range links.

This review is organized as follows. In Sect. 2, we will present an example
of complex network that may be of broad interest: the conceptual network of
English words. The topology of this network was recently studied by us [13]
and we hope this example can serve to illustrate the interdisciplinary nature
of research on complex networks, and how quantitative characterizations can
be useful for a discipline that has traditionally been qualitative. In Sect. 3, we
present a simple model to address the issue of attack-induced cascades in complex
networks [14]. Ranged-based attacks on links and the origin of the small-world
phenomenon in scale-free networks [15] are detailed in Sect. 4. A brief discussion
is presented in Sect. 5.
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2 Conceptual Network of Language

A language can be regarded as a network where words correspond to nodes of
the network. We define two words in a language to be connected if they express
similar concepts. The resulting network of connections among many thousands of
words is potentially relevant not only for the study of the languages themselves,
but also for cognitive science. This issue has recently been studied quantitatively
[13] by mapping out the conceptual network of English language. In particular
it has been shown that this network exhibits the small-world property.

To construct the network [13], we define the connections according to the
entries of a Thesaurus dictionary. Such a dictionary gives for every entry a list
of words that are conceptually similar to the entry word. For instance, for the
word “nature” it lists “character”, “world”, “universe” etc. We define a network
where each entry word is a node, and two nodes are connected if one of the
corresponding words is listed as conceptually similar the other one, as depicted
in Fig. 1. In our study we used online English Thesaurus that is available at [16],
which has over 30,000 entries. The resulting network has an average of about 60
connections per node.

Despite being sparse, the conceptual network is expected to be highly clus-
tered, because there are many sets of related words that are densely intercon-
nected. Indeed, the numerical computation of the clustering coefficient C yields
a number more than 250 times larger than the corresponding value for a random
network with the same parameters (see Table I). On the other hand, because
the network is sparsely connected and only words expressing similar concepts are
linked, one might naively conclude that the average network distance L should
be large. However, our numerical computation yields L = 3.2, which is very close
to the value of about 2.5 of the corresponding random network (see Table I).
This means that two words in the 30,000-words dictionary are connected by only
three degrees of separation, on average. This surprisingly small L is due to words
that correspond to two or more very different concepts and work as shortcuts,
connecting regions of the network that would otherwise be separated by many
links. In fact, less than 1 percent of the words require more than 4 steps to
be reached from other words, on average. Words that require many links to be
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Fig. 1. Small part of the conceptual network of the English language.
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Table 1. Comparison between the conceptual network defined by the Thesaurus dic-
tionary and a random network with the same parameters. N is the total number of
nodes (entry words) in the largest connected component, k̄ is the average number of
links per node, C is the clustering coefficient, and L is the average network distance.

N k̄ C L

Actual configuration 30,244 59.9 0.53 3.16
Random configuration 30,244 59.9 0.002 2.5

reached are usually very specialized, such as “appendectomy” which requires a
path of length eight to be connected with “quadrillion”4.

Therefore, the conceptual network English language is highly clustered and
at the same time has a very small average network distance, i.e., it is a small-
world network. Although we have focused on a particular language (English) we
expect similar results to hold of other languages as well because high clustering
comes from the existence of concepts shared by more than two words and short
average network distance comes from the existence of words that share meanings
with otherwise unrelated words. Both features are seemingly present in many
languages.

This result is potentially relevant for cognitive science. From the standpoint
of retrieval of information in an associative memory, the small-world property
of the network represents a maximization of efficiency. On the one hand, similar
pieces of information are stored together; on the other hand, even very different
pieces of information are never separated by more than a few links. The former
makes searching by association possible, while the latter guarantees a fast search
[17]. It is thus tempting to speculate that associative memory may have arisen
partly because of a maximization of efficiency in the retrieval of information by
natural selection.

For more details we refer to [13]. Different aspects of language networks have
been addressed by other authors [18–22,3,23,24].

3 Attack-Induced Cascades in Complex Networks

A convenient way to address the security of a complex network is to examine how
the size of the largest connected component, which is a measure of the efficiency
of communication (or information flow) within the network, is reduced under
random or intentional attacks. Scale-free networks are known to be sensitive to
the removal of highly connected nodes [25–29]. However, the existence of a giant
connected component in the network does not depend on the presence of highly
connected nodes and can be present even after the removal of a significant num-
ber of nodes [29,30]. Previous studies on network security address mainly static
properties. Our concern is that network architecture represents only one aspect
4 quadrillion → googol → infinity → holiness → purity → sterility → birth control →

vasectomy → appendectomy
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of the security problem. An important question for many real-world situations
is how attacks affect the functions of a network when the flow of information
or other physical quantity in the network are taken into consideration. In par-
ticular, the removal of nodes changes the balance of flows and may trigger a
cascading failure [31–34], as the one that happened on August 10, 1996 in the
western U.S. power grid [35,36]. A simple model has been recently introduced
[14] for cascades of overload failures in complex networks. We show that for
networks where loads can redistribute among the nodes, intentional attacks on
highly loaded nodes can trigger a large-scale cascade of overload failures.

Our model is defined as follows [14]. Suppose that at each time step one unit
of the relevant quantity is exchanged between every pair of nodes in the network
and is transmitted along the shortest paths connecting them. The load at a node
is then simply the betweenness centrality [37–39], i.e. total number of shortest
paths passing through the node. The capacity of a node is the maximum load
that the node can handle. Since capacity is costly, it is natural to assume that
the capacity Ci of node i is proportional to the initial load Li on that node,

Ci = (1 + α)Li, i = 1, 2, ...N, (1)

where α ≥ 0 is the tolerance parameter, and N is the initial number of nodes.
When all the nodes are connected, the entire network operates insofar as α ≥ 0.
But the removal of nodes in general changes the distribution of loads. The load
at a particular node can then change. If it increases and becomes larger than the
capacity, the corresponding node fails. Any failure leads to a new redistribution
of loads and, as a result, subsequent failures can occur. Because of the global
redistribution of load, new failures may be driven by events happening far away.
This cascading process can stop after a few steps but it can also propagate and
shutdown a considerable fraction of the network5. But under what conditions
can such a global cascade happen?

Our result is that global cascades occur if the network exhibits a highly
heterogeneous distribution of loads and the removed nodes are among those with
higher load. Otherwise, cascades are not expected. In order to understand this
result, consider the removal of a single node. If the node has small load, its
removal will not cause major changes in the balance of loads. However, when
the load at the node is large, its removal is likely to affect significantly the loads at
other nodes and possibly starts a sequence of overload failures. In networks with
some degree of randomness, the distribution of loads is highly correlated with the
distribution of links. In particular, networks with heterogeneous distribution of
links, such as scale-free networks, are expected to be heterogeneous with respect
to load as well, so that nodes with larger number of links will have higher load
[38,40], on average. This results reveals another aspect of the robust-yet-fragile
property of heterogeneous networks, which was first observed for the attack on
several nodes [25]. In the case of cascades, a large damage can be caused by the
attack on one or very few nodes.
5 A different model and mechanism for overload breakdown due to networks growth

has been considered in [39].
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Fig. 2. Cascading failure in scale-free networks with scaling exponent γ = 3, as trig-
gered by the removal of one node chosen at random (squares), or among those with
largest connectivities (stars) or highest loads (circles). Each curve corresponds to the
average over 5 triggers and 10 realizations of the network. The error bars represent the
standard deviation. The number of nodes in the largest component is 5000 ≤ N ≤ 5100.

We simulate cascades triggered by random failures and by intentional at-
tacks. In the case of failures, we choose a trigger at random among all the nodes
of the network. In the case of attacks, the targeted node is selected from those
with highest loads or largest connectivities. We consider heterogeneous networks
with scale-free distribution of links and compare them with an equivalent homo-
geneous configuration. To generate the networks, we start with a list of integers
representing the connectivities of the nodes, i.e. the number of end-links of each
node [41,15]. Next, we pick up pairs of end-links at random and connect them
to form a link and repeat this process until the last pair is connected, prohibit-
ing self- and repeated links. Let N denote the number of nodes in the largest
connected component of the resulting network. The damage caused by a cascade
is quantified in terms of the relative size G of the largest connected component
G = N ′/N , where N ′ are the number of nodes in the largest component after
the cascade.

Figure 2 shows results for scale-free networks with scaling exponent γ = 3.
On average, G remains close to unity in the case of random breakdowns but is
significantly reduced under intentional attacks, even for α unrealistically large.
This result is in agreement with intuition, because in the case of random break-
down the trigger is probably one of the many nodes with small load, while in
the case of intentional attack it is a node with very large load. The damage is
larger for smaller values of α, and the attack of nodes with highest loads is more
destructive than the attack of nodes with largest connectivities. Figure 3 shows
the corresponding results for a homogeneous network with the same number of
nodes and exactly 3 links per node. In the inset we display results for scale-free
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Fig. 3. Cascading failures in homogeneous networks with degree k = 3 and N = 5000.
Inset: the same for scale-free networks with γ = 3, N = 5000, and k ≥ 2 (different
from the networks in Fig. 1, here each node has 2 or more links). The resulting average
connectivity is 〈k〉 ≈ 3.1. The legends and other parameters are the same as in Fig. 1.

networks with about the same average number of links per node. The homo-
geneous network does not experience cascading failures due either to random
breakdown or to intentional attacks for α as small as 0.05. For the scale-free
(heterogeneous) network, cascades triggered by the attack on a key node can
drastically reduce the size of the the largest connected component, as shown in
the inset. Therefore, networks with homogeneous distribution of load appear to
be more robust against attacks than the heterogeneous ones. This conclusion
does not rely on the particular properties of these models, as the same was also
observed for other classes of networks.

These findings are expected to be important for real-world networks. Indeed,
many infrastructure networks have heterogeneous distribution of load and as
such are expected to undergo large-scale cascades if some vital nodes are at-
tacked, but rarely in the case of random breakdown. For details see [14].

4 Range-Based Attacks on Links in Complex Networks

The Watts and Strogatz [6] model of small-world networks identifies the small
shortest paths observed in locally structured, sparse networks as being due to
long-range connections, while short-range links are responsible for high cluster-
ing. This observation matches with the known results for the Erdös-Rényi model
of random networks [42], where almost all links are long-range connections and
the average network distance increases only logarithmically with the number N
of nodes [8]. In most regular networks, on the other hand, all the links have
small range and the average shortest path increases with a power of N . All these
models display a relatively homogeneous distribution of connectivities. Many
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real networks having very small average network distance have been identified
as scale-free [7,3]. Scale-free networks are heterogeneous as their connectivity
can vary significantly from node to node and a considerable number of links can
be associated with a few highly connected nodes.

A recent paper [15], which we shall review here, has studied the contribution
of short-range links to the shortness of the node-to-node distances in scale-free
networks, by analyzing the impact of attacks on short-range links versus those on
long-range links. Our results contrast with the tacit assumption that long-range
connections are responsible for the small average network distance exhibited
by these networks. Our findings are based on the observation that the average
network distance is a global quantity which is mainly determined by links with
large load.

Our attack strategy is as follows [15]. We measure the efficiency of the net-
work as links are successively removed according to their ranges: (i) for short-
range attacks, links with shorter ranges are removed first; (ii) for long-range
attacks, links with longer ranges are removed first. The efficiency is measured by
the shortest paths between pairs of nodes. A convenient quantity to characterize
the efficiency is [43]

E =
2

N(N − 1)

∑ 1
dij
, (2)

where dij is the length of the shortest path between nodes i and j and the sum
is over all N(N − 1)/2 pairs of nodes. The network is more efficient when it has
small shortest paths, which according to our definition corresponds to large E.

To be specific we consider the network model described in the previous sec-
tion, where the nodes are connected randomly for a given scale-free distribution
with scaling exponent γ, and self- and repeated links are prohibited. In order
to have nontrivial networks in the limits of small and large γ, we bound the
connectivity so that kmin ≤ ki ≤ kmax for i = 1, 2, . . . , N , where kmin and kmax
are constant integers. For γ →∞, the network is homogeneous as all the nodes
have the same connectivity kmin. The distribution of connectivities becomes
increasingly more heterogeneous as γ is decreased.

In randomly generated networks, nodes with larger connectivity are expected
to be on average closer to each other than those with smaller connectivity [15].
More specifically, the distance dij between nodes i and j is expected to be highly
correlated with the product of the connectivities ki and kj . This suggests that the
range is also correlated with the product of the connectivities so that short-range
links tend to link together highly connected nodes, while long-range links tend
to connect nodes with very few links. Moreover, links between nodes with large
connectivities are expected to be passed through by a large number of shortest
paths (see [12]). That is, on average these links should possess a higher load [12]
than those connected to nodes with few links, where the load of a link is defined
as the number of shortest paths passing through the link [37,38]. These have
been confirmed numerically, as shown in Fig. 4 for γ = 3. As a result, high load
should be associated mainly with short-range links. Since links with higher load
are expected to contribute more to the shortness of the paths between nodes,
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Fig. 5. Efficiency for short- and long-range attacks (normalized by the initial value)
as a function of the fraction of removed links. All the parameters other than γ are the
same as in Fig. 5.

such a correlation between load and range implies that attacks on short-range
links are more destructive than those on long-range links.

In Fig. 5 we show the efficiency for both short- and long-range attacks, for
different values of γ. Short-range attacks are clearly more destructive than long-
range ones for intermediate values of γ, as shown in Figs. 5(a) and 5(b) for γ = 3
and γ = 5, respectively. The corresponding relation between the average load and
range, plotted in Fig. 6 for γ = 3, confirms that higher load on links with shorter
range is the mechanism underlying this phenomenon. Long-range attacks become
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Fig. 6. Averaged load as a function of the range for γ = 3 and γ = ∞. All the
parameters other than γ are the same as in Fig. 4.

more destructive only for networks with sufficiently small or large values of γ. In
Figs. 5(c) and 5(d) we show the results for γ = 2.5 and γ = ∞, respectively. The
exchange of the roles of attacks on short- and long-range links for networks with
small values of γ is a model dependent effect due to the appearance of a densely
connected subnetwork of nodes with large connectivity. For networks with large
values of γ, switching of the roles of short- and long-range attacks is caused by
the homogenization of the network and similar behavior has been observed in
growing models of scale-free networks as well [15]. In a homogeneous network
all the nodes have approximately the same connectivity. Therefore, links with
higher load are precisely those between distant nodes, i.e., those with larger
range, as shown in Fig. 6 for γ = ∞. Incidentally, the long-range attack is
also more destructive in other homogeneous models, such as the Watts-Strogatz
model and the Erdös-Rényi random model [15].

We have also considered growing models of scale-free networks [7,44]. In all
the cases, short-range attack has been observed to be the most effective for
scale-free networks with scaling exponent around γ = 3 [15].

5 Discussion

In this paper, we have reviewed two problems concerning attacks on and security
of complex networks. The study of attacks on complex networks is important in
order to identify the vulnerabilities of real-world networks, which can be used
either for protection (e.g., of infrastructures) or for destruction (e.g., in the
control of epidemic diseases). Additionally, it can provide guidance in designing
more robust artificial networks (e.g., communication networks).

Our result on cascades in complex networks indicates that while the scale-
free property makes many natural and man-made networks quite robust against
to random failure of nodes, the presence of a few nodes with very large load
may make the network vulnerable to a cascade of overload failures capable of
disrupting the network into small fragments. Such a global cascade represents a
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serious threat because it may be triggered by relatively small events and prevents
an efficient communication between most nodes in the network.

We have also shown that for a wide interval of the scaling exponent around
γ = 3, fairly random scale-free networks are more vulnerable to short-range at-
tacks than long-range ones. This property results from a higher concentration
of load on short-range links. Our findings have the important implication that
short-range links are more important than long-range links for an efficient com-
munication between nodes, which is the opposite to what one might expect from
other classes of small-world networks. This result is potentially relevant for the
spread of sexual diseases, which has been argued to take place in a scale-free
network [45]. Although we have focused on scale-free networks, similar results
are expected to hold for other classes of heterogeneous networks.

More details about the content of this review can be found in [13–15].
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32. Y. Moreno, J. B. Gómez, and A. F. Pacheco, Europhys. Lett. 58, 630 (2002).
33. K.-I. Goh, D.-S. Lee, B. Kahng, and D. Kim, Phys. Rev. Lett. 91, 148701 (2003).
34. Y. Moreno, R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Europhys. Lett.

62, 292 (2003).
35. B. A. Carreras, D. E. Newman, I. Dolrou, and A. B. Poole, in: Proceedings of

Hawaii International Conference on System Sciences, January 4-7, 2000, Maui,
Hawaii.

36. M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Phys. Rev. E 61, 4877 (2000).
37. M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
38. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).
39. P. Holme and B. J. Kim, Phys. Rev. E 65, 066109 (2002).
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Scholarly Information Network

Paul Ginsparg

Departments of Physics and Computing & Information Science, Cornell University,
Ithaca, NY 14853, USA

Abstract. I review the background and some recent trends of a particular scholarly
information network, arXiv.org, and discuss some of its implications for new scholarly
publication models. If we were to start from scratch today to design a quality-controlled
archive and distribution system for scientific and technical information, it could take a
very different form from what has evolved in the past decade from pre-existing print in-
frastructure. Near-term advances in automated classification systems, authoring tools,
and document formats will facilitate efficient datamining and long-term archival sta-
bility, and I discuss how these could provide not only more efficient means of accessing
and navigating the information, but also more cost-effective means of authentication
and quality control. Finally, I illustrate the use of machine learning techniques to an-
alyze, structure, maintain, and evolve a large online corpus of academic literature.
An emerging field of research can be identified as part of an existing corpus, permit-
ting the implementation of a more coherent community structure for its network of
practitioners.

1 arXiv Background and Lessons

I will discuss here some aspects of arXiv.org, a research/social network in which
many researchers have been participating for more than a decade. While pri-
marily providing research communications infrastructure, it is also a significant
resource for model building and algorithmic experiments in networks. I’ll also
provide some “cultural enlightenment”, in the form of a lighting review of some
basic text classification methods (the “Vector Space Model” and “Support Vec-
tor Machine”), and their potential use in cleaning, building and maintaining
the arXiv subject class structure. The specific experiment I discuss is an ex-
ample of extracting an emerging research area, “Quantitative Biology”, from
a larger scale resource. The issue of disentangling sub-networks and their as-
sociated subcommunities from the global network also has applications in the
broader worldwideweb arena.

The arXiv1 is an automated repository of over 250,000 full-text research
articles2 in physics and related disciplines (mathematics, non-linear sciences,
computer science) going back over a decade and growing at a rate of 40,000 new
submissions per year. New submissions are received at a rate of over 175 per

1 See arXiv.org. For general background, see [1,2].
2 as of mid-Oct 2003

P. Ginsparg, Scholarly Information Network, Lect. Notes Phys. 650, 313–336 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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weekday from scientists all over the world and the submission rate is increasing
at about 10% per year.

The arXiv began in 1991 as an e-mail interface to create, maintain, and
access a set of documents for specialists in a particular subject area, a subset
of theoretical High Energy Physics. It quickly grew to encompass other subject
areas, added a web interface in 1993, and its expansion in use and breadth of
coverage continued throughout the 1990’s, and continues today. It now serves
over 10 million requests per month [3], including tens of thousands of search
queries per day, and over 20 million full-text downloads during calendar year ’02.
It is a significant example of a Web-based service that has changed the practice
of research in a major scientific discipline. It now provides nearly comprehensive
coverage of large areas of physics, and serves as an on-line seminar system for
those areas.

Usage data has been collected since 1991, including Web usage logs beginning
in 1993. With this unique dataset, arXiv.org provides a fertile ground for postu-
lating hypotheses and evaluating them. It also serves as a testbed for identifying
optimal formats and protocols for rendering, indexing, linking, querying, access-
ing, mining, and transmitting information, and to identifying sociological, legal
and financial obstacles to realization of ideal research communication systems.

When the arXiv was initiated in 1991, no physics journals were yet on-line.
Figure 1 shows the continued growth in the monthly submission rate during the
past 12 years, now corresponding to 50% more new submissions per month than
just four years ago. The original intent was not to supplant journals, but to
provide equal and uniform global access to prepublication materials (originally
it was only to have had a three month retention time). Due to the multi-year
period from 1991 until established journals did come on-line en masse, the arXiv
de facto took on a much larger role, by providing the unique on-line platform
for near-term (5–10 year) “archival” access. Electronic offerings have of course
become commonplace since the early 1990’s, and conventional publishers are
also set up to provide superior services wherever manual oversight, at addi-
tional cost, can improve on the author’s product: e.g., correcting bibliographic
errors and standardizing the front- and back-matter for automated harvesting.
Some of these costs will ultimately decline or disappear, however, with a more
standardized “next-generation” document format, and improved authoring tools
to produce it — developments from which automated distribution systems will
benefit equally.

What are the overlapping roles of the arXiv and the current journal system?
Primarily, the arXiv provides instant pre-review dissemination, aggregated on
a field-wide basis, a breadth far beyond the capacity of any one journal. The
journals augment this with some measure of authentication of authors, and a
certain amount of quality control of the research content, providing at least the
minimum certification of “not obviously incorrect, not obviously uninteresting”.
In many cases they provide more than that, e.g., those journals known to have
higher selectivity convey an additional measure of short-term prestige. Both the
arXiv and the journals provide access to past materials. It is occasionally argued
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Fig. 1. (See arXiv.org/show monthly submissions for update)
The number of archive submissions deposited per month, from August 1991 through
the end of 2003. Submissions are currently growing at a rate of roughly 10% per
year, and there were just under 40,000 new submissions during calendar year 2003.
The total number of submissions since 1991 was just under 260,000 at the end
of 2003, over half of which were received since the beginning of the year 2000.
The majority of growth is in areas of physics other than High Energy Physics (see
arXiv.org/Stats/hcamonthly.html ), which already saturated near 100% participa-
tion during the 1990’s.

that organized journals may be able to provide a greater degree of long-term
archival stability, both in aggregate and for individual items, though looking a
century or more into the future this is difficult to project one way or the other.

With conventional overlapping journals having made so much on-line progress,
does there remain a continued role for the arXiv, or is it on the verge of obso-
lescence? Informal polls of researchers suggest that it remains unthinkable to
discontinue the resource, that it would simply have to be reinvented because
it plays some essential role not fulfilled by any other resource. Hard statistics
substantiate this: as mentioned earlier over 20 million full-text downloads during
calendar year 2002, on average the full-text of each submission downloaded over
300 times in the 7 years from 1996–2002, and some downloaded in the tens of
thousands of times. Figure 2 shows the steady growth in numbers of full-text
downloads from the main site. The usage is significantly higher than comparable
on-line journals in the field, and, most importantly, the access numbers have ac-
celerated upwards as the conventional journals have come on-line over the past
seven years. (Note also that the usage per user has also increased over this pe-
riod, signaling a measurable change in user behavior over this period.) This is



316 P. Ginsparg

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

01/01/1996 01/01/1997 01/01/1998 01/01/1999 01/01/2000 01/01/2001 01/01/2002

fu
ll-

te
xt

 d
ow

nl
oa

ds
/w

ee
k,

 ’9
6-

’0
1 

(m
ai

n 
si

te
 o

nl
y)

Fig. 2. Full-text downloads per week at the arXiv.org main site only from 1996 through
the end of 2001. We continue to see a slightly greater than linear increase in the number
of downloads and estimate a total of 27 million full-text downloads from the full arXiv
network during 2003. (The yearly chasms result from a mysterious disappearance of
readers during New Year holiday periods.)

not to suggest, however, that physicist users are in favor of rapid discontinuation
of the conventional journal system either.

What then is so essential about the arXiv to its users? The immediate answer
is “It gives instant communication, without having to wait a few months for the
peer review process.” Does that mean that items should then be removed after
some fixed time period? The answer is still “No, it remains incredibly useful as a
comprehensive archival aggregator,” i.e., a place where for certain fields instead
of reading any particular journal, or set of journals, one can browse or search
and be certain that the relevant article is there, and if it’s not there it’s because
it doesn’t exist.

It has been remarked [4] that physicists use the arXiv site and do not ap-
pear concerned that the papers on it are not refereed. The vast majority of
submissions are nonetheless submitted in parallel to conventional journals (at
no “cost” to the author), and those that aren’t are most frequently items such as
theses or contributions to conference proceedings that nonetheless have under-
gone some effective form of review. Moreover, the site has never been a random
UseNet newsgroup-like free-for-all. From the outset, a variety of heuristic screen-
ing mechanisms have been in place to ensure insofar as possible that submissions
are at least of refereeable quality . That means they satisfy the minimal criterion
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that they would not be peremptorily rejected by any competent journal editor
as nutty, offensive, or otherwise manifestly inappropriate, and would instead at
least in principle be suitable for review (i.e., without the risk of alienating or
wasting the time of a referee, that essential unaccounted resource). These mech-
anisms are an important — if not essential — component of why readers find
the site so useful: though the most recently submitted articles have not yet nec-
essarily undergone formal review, the vast majority of the articles can, would, or
do eventually satisfy editorial requirements somewhere. Virtually none are en-
tirely useless to active physicists. That is probably why expert arXiv readers are
eager and willing to navigate the raw deposited material, and greatly value the
accelerated availability over the filtering and refinement provided by the journal
editorial processes (even as little as a few months later).

The arXiv operates as a pure dissemination system, i.e., without the editorial
operations associated with peer review, at a factor of 100 to 1000 times lower
in cost than a conventionally peer-reviewed system [2]. This is the real lesson
of the move to electronic formats and distribution: not that everything should
somehow be free, but that with many of the production tasks automatable or
off-loadable to the authors, the editorial costs will then dominate the costs of an
unreviewed distribution system by many orders of magnitude. This is the subtle
difference from the paper system, in which the expenses directly associated with
print production and distribution were roughly the same order of magnitude as
the editorial costs. When the two were comparable in cost, it wasn’t as essential
to ask whether the production and dissemination system should be decoupled
from the intellectual authentication system. Now that the former may be feasible
at a cost of less than 1% of the latter, the unavoidable question is whether the
utility provided by the latter, in its naive extrapolation to electronic form, con-
tinues to justify the associated time and expense. Since many communities rely
in an essential way on the structuring of the literature provided by the edito-
rial process, a first related question is whether some hybrid methodology might
provide all of the benefits of the current system, but for a cost somewhere in be-
tween the greater than $1000/article cost of current editorial methodology and
the less than $10/article cost of a pure distribution system. A second question is
whether a hybrid methodology might also be better optimized for the differing
needs, on differing timescales, of expert readers on the one hand and neophytes
on the other.

Before considering these questions in more detail, some logistical and policy
issues facing the system are worth mentioning. Ever-increasing automation is
necessary so that a constant small staff can maintain current standards of service
and appropriateness despite the constantly increasing rate of new submissions.
The labor per submission is a skewed distribution: there are subsets, such as
the original hep-th (High Energy Physics – Theory), which operate according to
the original “fully automated” design, with users requiring no assistance at all.
Indeed the vast majority of submissions require zero labor time and only a very
small number of new users and problematic submissions are responsible for all
labor time spent. This has to be the case, since there are upwards of 200 new
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submissions and replacements per weekday — if each took even just 15 minutes
of human labor at the arXiv end, that would mean over 50 hours of work per day,
i.e., at least 7 full-time employees. The current tiny percentage of problematic
submissions, and smattering of other user questions, in reality requires less than
a single full-time equivalent.

The system also faces policy issues regarding what constitutes the legitimate
participating author community. This was not so pressing back in the early ’90s,
before the non-academic world had discovered the internet. It is clear there needs
to be a line drawn somewhere, since readers are not served by submissions that
are either manifestly non-science or contain offensive content (pornographic or
otherwise). It is likely the system will turn to some form of “sponsorship” sys-
tem, in which new registrants need to be endorsed by existing submitters before
permitted to make new submissions. This is one way in which the on-line com-
munity could reflect the physical research community: comprised of people at
known institutions, and the people they know and trust, iterated. This web of re-
lationships defined by this networked community is related to the co-authorship
web [5] reported on elsewhere at this meeting, and could be analyzed in similar
ways.

2 New Scholarly Publication Models

The question for our scholarly research communications infrastructure is: if we
were not burdened with the legacy print system and associated methodology,
what sort of network would we design for our scholarly communications in-
frastructure? Do the technological advances of the past decade suggest a new
methodology that provides greater utility to the research enterprise at the same
or lower cost? (Parts of this section are adapted from [3].)

2.1 Open Access

There has been much recent discussion of free access to the on-line scholarly lit-
erature. It is argued that this material becomes that much more valuable when
freely accessible [6], and moreover that it is in public policy interests to make
the results of publicly funded research freely available as a public good [7]. It is
also suggested that this could ultimately lead to a more cost-efficient scholarly
publication system. The response of the publishing community has been that
their editorial processes provide an essential service to the research community,
that these are labor-intensive and hence costly, and that even if delayed, free
access could impair their ability to support these operations. (Or, in the case
of commercial publishers, reduce revenues to below the profit level necessary to
satisfy their shareholders or investors.) Informal surveys (e.g., [2]) of medium-
to large-scale publishing operations suggest a wide range in revenues per ar-
ticle published, from the order of $1000/article to more than $10,000/article.
The smaller numbers typically come from non-profit operations that provide a
roughly equivalent level of service, and hence are more likely representative of



Scholarly Information Network 319

actual cost associated with peer reviewed publication. Even some of these latter
operations are more costly than might ultimately be necessary, due to the contin-
ued need to support legacy print distribution, but the savings from eliminating
print and going to an all-electronic in-house work-flow are estimated for a large
non-profit publisher to be at most on the order of 30%.3 The majority of the
expenses are for the non-automatable editorial oversight and production staff:
labor expenses that are not only unaffected by the new technology but that also
increase faster than the overall inflation rate in developed countries.

It is also useful to bear in mind that much of the current entrenched method-
ology is largely a post World War II construct, including both the largescale entry
of commercial publishers and the widespread use of peer review for mass pro-
duction quality control. It is estimated that there are well over $8 billion/year
in revenues in STM (Scientific, Technical, and Medical) primary publishing, for
somewhere on the order of 1.5-2 million articles published/year. If non-profit
operations had the capacity to handle the entirety, and if they could continue
to operate in the $500-$1500 revenue per published article range, then with no
other change in methodology there might be an immediate 75% savings in the
system, releasing well over $5 billion globally.

One proposal to continue funding the current peer-review editorial system is
to move entirely from the subscription model to an “author-subsidy” model, in
which authors or their institutions pay for the material, either when submitted
or when accepted for publication, and the material is then made freely available
to readers. While such a system may prove workable in the long-run, it is difficult
to impress upon authors the near-term advantages of moving in that direction.
It would have the very useful effect of making more manifest directly to authors
not only what the minimum real costs are, but also what are the cost hierarchies
within the system. This could help to bring market forces to bear on a system
that currently operates on a monopolistic basis. A few examples of recently cre-
ated journals experimenting with this mode are the New Journal of Physics
(www.njp.org), the BioMedCentral journals (www.biomedcentral.com), and
the Public Library of Science journals (www.plos.org).

From the institutional standpoint, it would also mean that institutions that
produce a disproportionate amount of quality research would pay a greater per-
centage of the costs. Some could consider this unfair, though in the long-term a
fully reformed and less expensive scholarly publication system should nonethe-
less offer real savings to those institutions, since they already carry the highest
costs in the subscription model. Another short-term difficulty with implementing
such a system is the global nature of the research enterprise, in which special

3 This estimate is for the American Physical Society, which publishes over 14,000
articles per year, and derives from figures discussed with its publications oversight
committee. The percentage estimated for other publishing operations will vary, espe-
cially when editorial time and overhead is differentially accounted. In the discussion
that follows, however, it matters only that there will be no windfall savings to pub-
lishers from going all-electronic, while employing the same overall labor-intensive
methodology.
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dispensation might be needed to accommodate researchers in developing coun-
tries, operating on lower funding scales. Correcting this problem could entail
some form of progressive charging scheme and a proportionate increase in the
charges to authors in developed countries, increasing the psychological barrier
to moving towards an author-subsidy system. A system in which editorial costs
are truly compensated equitably would also involve a charge for manuscripts
that are rejected (sometimes these require even more editorial time than those
accepted), but implementing that is also logistically problematic.

2.2 Peer Review

Many participants in the current peer review system regard it as the only possible
quality control mechanism for the literature, signalling important contributions
to readers, and necessary for deciding job and grant allocations. But this view-
point relies on two very strong implicit assumptions: a) that the necessary signal
results directly from the peer review process itself, and b) that the signal in ques-
tion could only result from this process. The question is not whether we still need
to facilitate some form of quality control on the literature; it is instead whether
given the emergence of new technology and dissemination methods in the past
decade, is the current implementation of peer review still the most effective and
efficient means to provide the desired signal?

Appearance in the peer-reviewed journal literature certainly does not pro-
vide sufficient signal: otherwise there would be no need to supplement the pub-
lication record with detailed letters of recommendation and other measures of
importance and influence. On the other hand, the detailed letters and citation
analyses would be sufficient for the above purposes, even if applied to a litera-
ture that had not undergone that systematic first editorial pass through a peer
review system. This exposes one of the hidden assumptions in the above: namely
that peer-reviewed publication is a prerequisite to entry into a system that sup-
ports archival availability and other functions such as citation analysis. In the
electronic world, that is no longer necessarily the case.

My own experience as a reader, author, and referee in Physics suggests that
current peer review methodology in this field strives to fulfill roles for two dif-
ferent timescales: to provide a guide to expert readers (those well-versed in the
discipline) in the short-term, and to provide a certification imprimatur for the
long-term. The attempt to perform both functions in one step necessarily falls
short on both timescales: too slow for the former, and not stringent enough for
the latter.

The observed behavior of expert readers indicates that they don’t value the
extra level of filtering provided by the current review process above their pref-
erence for instant availability of material “of refereeable quality.” Non-expert
readers typically don’t need the availability on the timescale of a few months,
but do eventually need a much higher level of selective filtering than is provided
on the short timescale. Expert readers as well could benefit on a longer timescale
(say a year or longer) from more stringent selection criteria, for the simple reason
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that the literature of the past decade is always much larger than the “instan-
taneous” literature. More stringent criteria on a longer timescale would also
aid significantly in the job and grant evaluation functions, for which signal on
the year or more timescale remains sufficiently timely. More stringent evaluation
could potentially play a far greater role than peer-reviewed publication currently
does, as compared with external letters and citation analyses.

The simplest modification proposal is thus a two-tier system4, in which on a
first pass only some cursory examination or other pro forma certification is given
for acceptance into a standard tier. This could be minimally labor-intensive, per-
haps relying primarily on an automated check of author institutional affiliation,
prior publication record, research grant status, or other related background; and
involve human labor primarily to adjudicate incomplete or ambiguous results
of an automated pass. The standard tier availability could also be used to col-
lect confidential commentary from interested readers so that eventual referees
would have access to a wealth of currently inaccessible information held by the
community, and help to avoid duplication of effort. Then at some later point
(which could vary from article to article, perhaps with no time limit), a much
smaller set of articles would be selected for the full peer review process. The
initial selection criteria for this smaller set could be any of a variety of impact
measures, to be determined, and based explicitly on their prior widespread and
systematic availability and citability: e.g., reader nomination or rating, citation
impact, usage statistics, editorial selection, . . . .

The precise criteria would depend on the architectural details of the reposi-
tories. In a federation of institutionally and disciplinarily held repositories, the
institutional repositories (e.g. Dspace, www.dspace.org) could rely on some form
of internal endorsement, while the disciplinary aggregates could rely either on
affiliation or on prior established credentials (termed “career review” in [12], as
opposed to “peer review”). Alternate entry paths for new participants, such as
referrals from prior credentialed participants or direct appeal for cursory editorial
evaluation (not full-fledged peer review), would also be possible. The essential
idea is to facilitate communication within the recognized research community,
without excessive noise from the exterior [9]. While multiple logically indepen-
dent (though potentially overlapping [2]) upper tiers could naturally evolve, only
a single globally held standard tier is strictly necessary, with of course any nec-
essary redundancy for full archival stability. Suitable licensing procedures or
copyright retention [7] to facilitate such a system are consistent with the spirit
of copyright law, “To promote the Progress of Science and useful Arts” (for a
recent discussion, see [13]).
4 For more details, see, e.g., [3]. The idea of using prior electronic distribution to

augment the referee process goes back at least to [8]. Proposals along the lines of
decoupling peer review from arXiv distribution can be found in [9] and the notion of
“overlay” journals is further discussed in [1]. A review of various “decoupling” and
“author subsidy” models proposed in the mid to late 1990’s, taking advantage of new
technology to implement improvements in research communication, can be found in
[10]. In particular, the “eprint moderator model” [11] was intended to reduce costs
by reducing the amount of material distributed in a commercial manner.
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Recent experience in Physics and related disciplines continues to reinforce
the desirability of experimentation within this model space, with the expectation
that similar implementations will prove feasible in other disciplines.

3 Novel Corpus Navigation Tools

The size of the arXiv corpus, over 250,000 documents, presents navigation chal-
lenges to researchers using the system and provides an excellent test-bed for
experimentation with navigation tools. For example, very preliminary experi-
ments in the use of a burst detection algorithm [14] applied to word occurrences
in titles provide tantalizing results. Figure 3 shows the title word bursts from
this analysis of hep-th submissions from 1991 until the end of 2001. Physicist
practitioners in the area recognize that this coarse first-pass version of the al-
gorithm, coupled with equally primitive visualization, already provides a cred-
ible map to significant trends in theoretical High Energy Physics over this pe-
riod.
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Fig. 3. Results from burst analysis of the words in the titles of submissions to the
hep-th archive. The curves indicate both the intensity of onset (height) and the rough
duration (width) of the bursts. (The vertical scale is somewhat arbitrary in this context,
proportional to the “cost function” of [14], rather than more intuitive notions of the
“strength” of the burst. The shape of the bursts, including the left–right symmetry, is
also an artifact of this primitive visualization.)
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Eventually this work will be extended to produce an on-line navigational
tool available to users of arXiv.org that will allow such analyses to be performed
over any portion of the archive. The intent is to implement intuitive and infor-
mative visualization methods that permit users to identify the most important
temporal patterns, and then navigate the underlying intellectual trends via hy-
pertext links annotating the visualization. This will require refinement of the
basic burst detection algorithm to the textual case at hand, including proper
handling of both common word multi-grams and synonymy. Use of citation tree
data, together with typical co-occurring terms, will permit a characterization of
the intellectual content of the burst, and a mapping of its prior and post intel-
lectual development. Such maps can be imagined as the analog of an annotated
genome for the field.

arXiv.org usage logs go back 12 years and embody a huge amount of in-
formation that has yet to be mined systematically for useful signal. Figure 4
shows the results of a straightforward analysis of the numbers of abstract and
full-text downloads at the main Cornell site and the LANL mirror site during
2002. Care has been taken to avoid over-estimating the number of downloads
(by screening for rapidly repeated or partial downloads and robotic activity).
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Fig. 4. Overview of download patterns at the main site (CUL) and the LANL mirror
site during 2002. The ratio of abstract views (‘abs’) to the number of full-text (‘f/t’)
downloads was roughly constant for many years until Google was permitted to full-text
index in early 2002, and provided external referrers directly to the texts.
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A number of interesting features stand out in this graph. First, the arXiv.org
main site was moved from LANL to Cornell in Dec 2001, and the figure shows
the transition in usage between the two sites. The downloads from the two sites
still remained roughly comparable, in part due to the persistence of hard-coded
links throughout the web to the old arXiv address, xxx.lanl.gov, which now
points to the LANL mirror lanl.arXiv.org. (This has the coincidentally ben-
eficial effect of providing load-balancing between the sites, though by the end
of 2003 — a year after the end of the graph in Fig. 4 — the distribution had
shifted to the main Cornell site handling more than 2.5 times the volume of the
LANL mirror.) Second is the onset of referrals from Google searches starting
in Apr 2002. Google was permitted to harvest full texts from the arXiv for in-
dexing starting in Mar 2002. Third, the “spikes” at the foot of the graph show
downloads for individual submissions resulting from Slashdot (slashdot.org)
referrals, some a sufficiently large percentage of overall activity to be visible in
the aggregate download graphs.

Automated characterization of documents based on their full-text usage pat-
terns is another current research area. For example, review articles are known to
have a particular usage “signature”: a long tail in the usage pattern over time.
Figure 5 ((a) and (b)) shows this signature in the usage patterns for a review
paper and a textbook. The similarity in patterns between the review articles
and the textbook confirms the intuition that they serve similar functions. The
identification can also be turned around to point readers to articles perhaps not
intended as review articles, but that nonetheless accrue review article status due
to their archival longevity. Figure 5 (a) also shows a typical relation between
documents, in which a reference from a non-review article (red) in an active
area can lead directly to an activity spike in a review article (blue). Note the
typical diminished long-term tail of the non-review article. Figure 5 (c) is an
example of some of the novel features that appear in download behaviors.

Other network structure and prediction analyses are possible: together with
the SLAC SPIRES-HEP database5, the arXiv database provides a public re-
source of full-text articles and associated citation tree of many millions of links,
with a focused disciplinary coverage, and rich usage data. The data from this site
has been used, for example, in the co-authorship network analysis [5] reported
on elsewhere at this meeting.

Recent research comparing usage patterns (downloads, expected to be related
to the number of times a document is read) and citation data for articles in the
NASA Astrophysical Data System [16] shows both correlated and uncorrelated
aspects. Similar data are available for arXiv.org: usage data from the logs, and
citation data extracted by other services (SLAC-SPIRES, CiteBase6). In particu-
lar, such data from arXiv.org were provided in the recently completed KDD Cup

5 The Stanford Linear Accelerator Center SPIRES-HEP database has comprehen-
sively catalogued the High Energy Particle Physics (HEP) literature online since
1974, and indexes more than 500,000 high-energy physics related articles including
their full citation tree (see [15]).

6 See citebase.eprints.org
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Fig. 5. Graphs showing the number of downloads per week as a function of time. (The
horizontal scale on all of (a,b,c) covers the same time period from the beginning of 1996
to the end of 2001, and the retrievals shown are from the main site only.) (a) Retrievals
of a review article (light gray) submitted in Nov 1996. A secondary spike in Apr 1997
coincides with the appearance of a non-review article (darker gray) that referred to it.
Note also the characteristic long tail for the review article. (b) Retrievals of a textbook
submitted in Dec 1999. (c) Usage pattern for an article submitted in Feb 1997 with
some atypical features, including an event in early 2001 shifting it to a higher “excited
state”, and effective review article status.

2003 data mining competition7 (see www.cs.cornell.edu/projects/kddcup),
and used as the basis for a network prediction task: predicting the number of
citations articles would receive in the future based on the network structure an-
notated by activity levels and other associated metadata. It is intriguing that
such predictions can be reliably made more or less independent of the intellectual
content of the actual articles.

7 held in conjunction with the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining
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4 Text Classification and Support Vector Machines

In what follows, we will use arXiv data to illustrate how machine learning meth-
ods can be used to analyze, structure, maintain, and evolve a large online corpus
of academic literature. The specific application will be to train a support vector
machine text classifier to extract an emerging research area from a larger-scale
resource. The automated detection of such subunits can play an important role
in disentangling other sub-networks and associated sub-communities from the
global network. This section and the following are adapted from [17].

The goal of text classification is the automatic assignment of documents to
a fixed number of semantic categories. In the “multi-label” setting, each docu-
ment can be in zero or one or more categories. Efficient automated techniques
are essential to avoid tedious and expensive manual category assigment for large
document sets. A “knowledge engineering” approach, involving hand-crafting ac-
curate text classification rules, is surprisingly difficult and time-consuming [18].
We therefore take a machine learning approach to generating text classification
rules automatically from examples.

The machine learning approach can be phrased as a supervised learning prob-
lem. The learning task is represented by the training sample Sn

(x1, y1), (x2, y2), . . . , (xn, yn) (1)

of size n documents, where xi represents the document content. In the multi-
label setting, each category label is treated as a separate binary classification
problem. For each such binary task, yi ∈ {−1,+1} indicates whether a document
belongs to a particular class. The task of the learning algorithm L is to find a
decision rule hL : x −→ {−1,+1} based on Sn that classifies new documents x
as accurately as possible.

Documents need to be transformed into a representation suitable for the
learning algorithm and the classification task. Information Retrieval research
suggests that words work well as representation units, and that for many tasks
their ordering can be ignored without losing too much information. This type
of representation is commonly called the “bag-of-words” model, an attribute–
value representation of text. Each text document is represented by a vector in
the lexicon space, i.e., by a “term frequency” feature vector TF(wi, x), with
component values equal to the number of times each distinct word wi in the
corpus occurs in the document x. Figure 6 shows an example feature vector for
a particular document. This is a particular form of the “Vector Space Model”
for representing text.

This basic representation is ordinarily refined in a few ways:

TF×IDF Weighting: Scaling the components of the feature vector with their
inverse document frequency IDF(wi) [19] often leads to improved perfor-
mance. In general, IDF(wi) is some decreasing function of the word frequency
DF(wi), equal to the number of documents in the corpus which contain the
word wi. For example,
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Fig. 6. Representing text as a feature vector.

IDF(wi) = log
(

n

DF(wi)

)
(2)

where n is the total number of documents. Intuitively, the inverse document
frequency assumes that rarer terms have more significance for classification
purposes, and hence gives them greater weight. To compensate for the effect
of different document lengths, each document feature vector xi is normalized
to unit length: ||xi|| = 1.

Stemming: Instead of treating each occurrence form of a word as a different
feature, stemming is used to project the different forms of a word onto a single
feature, the word stem, by removing inflection information [20]. For example
“computes”, “computing”, and “computer” are all mapped to the same stem
“comput”. The terms “word” and “word stem” will be used synonymously
in the following.

Stopword Removal: For many classification tasks, common words like “the”,
“and”, or “he” do not help discriminate between document classes. Stopword
removal describes the process of eliminating such words from the document
by matching against a predefined list of stop-words. We use a standard sto-
plist of roughly 300 words.

SVMs [21] were developed by V. Vapnik et al. based on the structural risk
minimization principle from statistical learning theory. They have proven to be
a highly effective method for learning text classification rules, achieving state-
of-the-art performance on a broad range of tasks [22,23]. Two main advantages
of using SVMs for text classification lie in their ability to handle the high di-
mensional feature spaces arising from the bag-of-words representation. From a
statistical perspective, they are robust to overfitting and are well suited for the
statistical properties of text. perspective, they can be trained efficiently despite
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Fig. 7. A binary classification problem (+ vs. −) in two dimensions. The hyperplane
h∗ separates positive and negative training examples with maximum margin δ. The
examples closest to the hyperplane are called support vectors (marked with circles).

the large number of features. A detailed overview of the SVM approach to text
classification, with more details on the notation used below, is given in [24].

In their basic form, SVMs learn linear decision rules

h(x) = sgn{w · x + b} , (3)

described by a weight vector w and a threshold b, from an input sample of n
training examples Sn = ((x1, y1), · · · , (xn, yn)), xi ∈ IRN , yi ∈ {−1,+1}. For a
linearly separable Sn, the SVM finds the hyperplane with maximum Euclidean
distance to the closest training examples. This distance is called the margin δ,
as depicted in Fig. 7. Geometrically, the hyperplane is defined by its normal
vector, w, and its distance from the origin, −b. For non-separable training sets,
the amount of training error is measured using slack variables ξi.

Computing the position of the hyperplane is equivalent to solving the follow-
ing convex quadratic optimization problem [21]:

Optimization Problem 1 (SVM (primal))

minimize: V (w, b, ξ) =
1
2
w ·w + C

n∑

i=1

ξi (4)

subj. to: ∀ni=1 : yi[w · xi + b] ≥ 1− ξi (5)
∀ni=1 : ξi > 0 (6)

The margin of the resulting hyperplane is δ = 1/||w||.
The constraints (5) require that all training examples are classified correctly

up to some slack ξi. If a training example lies on the “wrong” side of the hyper-
plane, we have the corresponding ξi ≥ 1, and thus

∑n
i=1 ξi is an upper bound

on the number of training errors. The factor C in (4) is a parameter that al-
lows trading off training error vs. model complexity. The optimal value of this
parameter depends on the particular classification task and must be chosen via



Scholarly Information Network 329

cross-validation or by some other model selection strategy. For text classification,
however, the default value of C = 1/maxi||xi||2 = 1 has proven to be effective
over a large range of tasks [24].

OP1 has an equivalent dual formulation:

Optimization Problem 2 (SVM (dual))

maximize: W(α) =
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

yiyjαiαj(xi · xj) (7)

subj. to:
n∑

i=1

yiαi = 0 (8)

∀i ∈ [1..n] : 0 ≤ αi ≤ C (9)

From the solution of the dual, the classification rule solution can be con-
structed as

w =
n∑

i=1

αiyixi and b = yusv −w ·xusv , (10)

where (xusv, yusv) is some training example with 0 < αusv < C. For the exper-
iments in this paper, SVMLight [24] is used for solving the dual optimization
problem8. More detailed introductions to SVMs can be found in [25,26].

5 arXiv q-bio Extraction

Before using the machine learning framework to identify new subject area con-
tent, we first assessed its performance on the existing (author-provided) category
classifications. Roughly 180,000 titles and abstracts were fed to model building
software which constructed a lexicon of roughly 100,000 distinct words and pro-
duced training files containing the TD×IDF document vectors for SVMLight.
(While the SVM machinery could easily be used to analyze the full document
content, previous experiments [24] suggest that well-written titles and abstracts
provide a highly focused characterization of content, at least as effective for our
document classification purposes.) The set of support vectors and weight pa-
rameters output by SVMLight was converted into a form specific to the linear
SVM, (3): a weight vector wc and a threshold bc, where c is an index over the
categories.

As seen in Fig. 8, the success of the SVM in classifying documents improves
as the size of a category increases. The SVM is remarkably successful at iden-
tifying documents in large (> 10, 000 documents) categories and less successful
on smaller subject areas (< 500 documents). A cutoff was imposed to exclude
subject areas with fewer than 100 documents.9

8 SVMLight is available at svmlight.joachims.org
9 Some of the smaller subject areas are known to be less topically focused, so the

difficulty in recall, based solely on title/abstract terminology, was expected.
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Fig. 8. Recall and Precision as functions of category size for 78 arXiv major categories
and minor subject classes. 2/3 of the sample was used as a training set and 1/3 as a
test set. The four largest categories, each with over 30,000 documents are cond-mat,
astro-ph, hep-th, and hep-ph.
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Experiments showed that the use of TF×IDF weighting as in (2) improved
accuracy consistently over pure TF weighting, so TF×IDF weighting was used in
the experiments to follow. We also used a document frequency threshold to ex-
clude rare words from the lexicon, but found little difference in accuracy between
using a document occurrence threshold of two and five.10 Increasing the weight
of title words with respect to abstract words, on the other hand, consistently
worsened accuracy, indicating that words in a well-written abstract contain as
much or more content classification import as words in the title. Changes in the
word tokenization and stemming algorithms did not have a significant impact
on overall accuracy. The default value of C = 1 in (9) was preferred.

There has been recent anecdotal evidence of an intellectual trend among
physicists towards work in biology, ranging from biomolecules, molecular path-
ways and networks, gene expression, cellular and multicellular systems to pop-
ulation dynamics and evolution.11 This work has appeared in separate parts of
the archive, particularly under “Soft Condensed Matter”, “Statistical Mechan-
ics”, “Disordered Systems and Neural Networks”, “Biophysics, and “Adaptive
and Self-Organizing Systems” (abbreviated cond-mat.soft, cond-mat.stat-mech,
cond-mat.dis-nn, physics.bio-ph, and nlin.AO). A more coherent forum for the
exchange of these ideas was requested, under the nomenclature “Quantitative
Biology” (abbreviated “q-bio”).

To identify first whether there was indeed a real trend to nurture and amplify,
and to create a training set, volunteers were enlisted to identify the q-bio content
from the above subject areas in which it was most highly focused. Of 5565 such
articles received from Jan 2002 through Mar 2003, 466 (8.4%) were found to
have one of the above biological topics as its primary focus. The total number of
distinct words in these titles, abstracts, plus author names, was 23558, of which
7984 were above the DF = 2 document frequency threshold. (Author names
were included in the analysis since they have potential “semantic” content in
this context, i.e., are potentially useful for document classification. The SVM
algorithm will automatically determine whether or not to use the information
by choosing suitable weights.)

A data-cleaning procedure was employed, in which SVMLight was first run
with C = 10. We recall from (4) and (9) that larger C penalizes training errors
and requires larger α’s to fit the data. Inspecting the “outlier” documents [27]
with the largest |αi| then permitted manual cleaning of the training set. 10 were
moved into q-bio, and 15 moved out, for a net movement to 461 q-bio (8.3%) of

10 Words that appeared in fewer than two documents constituted roughly 50% of the
lexicon, and those that appeared in fewer than five documents roughly 70%. Ignoring
rare and consequently uninformative words hence reduces the computational needs.

11 This is really a long tradition, going back to prominent examples such as
M. Delbrück, F. Crick, W. Gilbert, . . . , and including J. Hopfield at the “Complex
Networks” conference at which the current presentation was given. So the question is
really whether there has been a recent acceleration of the trend. Note also that with
few recent examples of biologists working on string theory or elementary particle
physics, it appears to be something of a one-way street, with no detailed balance in
the diffusion process.
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Fig. 9. The number of submissions per year from 1992 through April 2003 in par-
ticular subsets of arXiv subject areas of cond-mat, physics, and nlin most likely to
have “quantitative biology” content. The percentage of q-bio content in these areas
grew from roughly 1% to nearly 10% during this timeframe, suggesting a change in
intellectual activity among arXiv-using members of these communities.

the 5565 total. Some of the others flagged involved word confusions, e.g., “genetic
algorithms” typically involved programming rather than biological applications.
Other “q-bio” words with frequent non-biological senses were “epidemic” (used
for rumor propagation), “evolution” (used also for dynamics of sandpiles), “sur-
vival probabilities”, and extinction. “Scale-free networks”, were sometimes used
for biological applications, and sometimes not (just as in other contributions to
this volume). To help resolve some of these ambiguities, the vocabulary was en-
larged to include a list of most frequently used two-word phrases with semantic
content different from their constituent words .

With a training set fully representative of the categories in question, it was
then possible to run the classifier on the entirety of the same subject area content
received from 1992 through Apr 2003, a total of 28,830 documents. The results
are shown in Fig. 9. A total of 1649 q-bio documents was identified, and the trend
towards an increasing percentage of q-bio activity among these arXiv users is
evident: individual authors can be tracked as they migrate into the domain.
Visibility of the new domain can be further enhanced by referring submitters in
real time, via the automated classifier running behind the submission interface.

Some components of the weight vector generated by the SVM for this training
set are shown in Fig. 10. Since the distance of a document to the classifying
hyperplane is determined by taking the dot product with the normal vector, its
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Fig. 10. Shown above are the most positive, a few intermediate, and most negative
components of the q-bio classifying weight vector.

component values can be interpreted as the classifying weight for the associated
words. The approach here illustrates one of the major lessons of the past decade:
the surprising power of simple algorithms operating on large datasets. In some
sense we have also come full circle, with the modern SVM technology of the late
90’s providing a formal framework for a heuristic binary “peer review” classifier
originally proposed over a decade ago (see Fig. 11).

The q-bio extraction described above was not just a thought experiment,
but a prelude to an engineering experiment. The new category went on-line in
mid-September 2003 (see arXiv.org/new/q-bio.html), at which time past sub-
mitters flagged by the system were asked to confirm the q-bio content of their
submissions, and to send future submissions to the new category. The activity
levels at the outset corresponded precisely to the predictions of the SVM text
classifier, and later began to show indications of growth catalyzed by the public
existence of the new category (see (arxiv.org/year/q-bio/03)). The subject
classes range from the small scale of biomolecules, genomics, and molecular net-
works, to the intermediate scale of cellular and multicellular systems, to the large
scales of population dynamics and evolution.

The experience gained from applying machine learning and text classifica-
tion techniques to extract the q-bio archive will be used in the future to develop
an enhanced SVM tool to facilitate better structuring of the arXiv.org corpus.
Together with document clustering algorithms, the tool will permit dynami-
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What’s new on the arXiv.org (xxx) e-print archives
(messages from ’91-’94: http://arXiv.org/new/91-94.html)

. . .

Nov 12 1991

In response to popular demand to limit the flux of papers,

This resource has adopted a referee system designed as a

faithful emulation of that employed, e.g., by the Physical Review

(except that papers will typically be evaluated within a few milliseconds).

The evaluation is based on a preprogrammed list of keywords, each with an

assigned positive or negative integer (reflecting respectively desirable

and undesirable words). The overall value of a paper is determined by the

signed sum of the number of occurrences of each keyword times its

associated value. Papers with value < or =0 are rejected. Keywords include

names of current and past fads, authornames (for both paper and references),

macropackages, etc. The assigned integers are programmed to vary randomly

within given preset ranges to emulate individual variation among referees,

and for additional realism are chosen entirely at random 20% of the time.

The preset ranges evolve dynamically in a neural net that determines positive

and negative contexts of word appearances via a rudimentary syntactic analysis.

Submitters of rejected papers will receive a detailed account of the

calculation, so they will know precisely why their paper was rejected.

Rejected papers may not be revised and resubmitted.

Objections, questions, and complaints will be automatically ignored.

Fig. 11. A binary classifier for “peer review”, originally proposed in Nov 1991 (see
arXiv.org/new/91-94.html). Compare methodology with the results of the SVM “q-
bio” classifier in Fig. 10.

cal subdivisions of the existing document collection, and perform data cleaning
and “outlier” detection. Once these text classification techniques are refined to
sufficient robustness, a text classification system will be deployed to provide
additional facilities such as real time classification suggestions to submitters
at upload-time, automated alerts of mis-classified articles, and keyword-based
alerting systems for arXiv.org subscribers (useful in finding articles otherwise
dispersed within the classification scheme).

6 Conclusion

While implemented as a passive dissemination system, the arXiv database has
also played a social engineering role in scholarly information network evolution,
with active research users developing an affinity to the system and adjusting
their behavior accordingly. They scan new submissions on a daily basis, assume
others in their field do so and are consequently aware of anything relevant that
has appeared there (while anything that doesn’t may as well not exist), and
use it to stake intellectual priority claims in advance of journal publication.
arXiv has also played a major role in pointing the way towards new scholarly
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publication models, as described in Sect. 2. It serves moreover as a testbed in the
development of new corpus navigational tools, as described in Sect. 3. Finally, the
machine learning tools of Sect. 4 were seen in Sect. 5 to be able to characterize
a subdomain and thereby help accelerate its growth, via the interaction of an
information resource with the research network of its practitioners.
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Abstract. Using data from computer databases of scientific papers in physics, biomed-
ical research, and computer science, we have constructed networks of collaboration
between scientists in each of these disciplines. In these networks two scientists are
considered connected if they have coauthored one or more papers together. We have
studied many statistical properties of our networks, including numbers of papers writ-
ten by authors, numbers of authors per paper, numbers of collaborators that scientists
have, typical distance through the network from one scientist to another, and a variety
of measures of connectedness within a network, such as closeness and betweenness.
We further argue that simple networks such as these cannot capture the variation in
the strength of collaborative ties and propose a measure of this strength based on the
number of papers coauthored by pairs of scientists, and the number of other scientists
with whom they worked on those papers. Using a selection of our results, we suggest a
variety of possible ways to answer the question “Who is the best connected scientist?”

1 Introduction

A social network is a set of people or groups each of which has connections of
some kind to some or all of the others [1,2]. In the language of social network
analysis, the people or groups are called actors and the connections ties. Both
actors and ties can be defined in different ways depending on the questions of
interest. An actor might be a single person, a team, or a company. A tie might
be a friendship between two people, a collaboration or common member between
two teams, or a business relationship between companies.

Social network analysis has a history stretching back at least half a century,
and has produced many results concerning social influence, social groupings, in-
equality, disease propagation, communication of information, and indeed almost
every topic that has interested twentieth century sociology. In the last few years,
it has become the focus of considerable attention in the applied mathematics
and statistical physics communities as well [3–6].

Traditional investigations of social networks have been carried out through
field studies. Typically one looks at a fairly self-contained community such as a
business community [7–9], a school [10,11], a religious or ethnic community [12],
and so forth, and constructs the network of ties by interviewing participants, or
by circulating questionnaires. A study will ask respondents to name those with
whom they have the closest ties, often ranked by subjective closeness, and may

M.E.J. Newman, Who Is the Best Connected Scientist? A Study of Scientific Coauthorship Networks,
Lect. Notes Phys. 650, 337–370 (2004)
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optionally call for additional information about those people or about the nature
of the ties.

Studies of this kind have revealed much about the structure of communities,
but they suffer from two substantial problems that make them poor sources
of data for the kinds of quantitative approaches to network analysis that have
been developed in physics and mathematics. First, the data they return are not
numerous. Collecting and compiling data from these studies is an arduous pro-
cess and most data sets contain no more than a few tens or hundreds of actors.
It is a rare study that exceeds a thousand actors. This makes the statistical
accuracy of many results poor, a particular difficulty for the large-system-size
methods adopted in statistical physics. Second, they contain significant and un-
controlled errors as a result of the subjective nature of respondents’ replies.
What one respondent considers to be a friendship or acquaintance, for example,
may be completely different from what another respondent does. In studies of
school-children, for instance [10,11,13], it is found that some children will claim
friendship with every single one of their hundreds of schoolmates, while oth-
ers will name only one or two friends. Clearly these respondents are employing
different definitions of friendship.

In response to these inadequacies, many researchers have turned instead
to other, better documented networks, for which reliable statistics can be col-
lected. Examples include the Internet [14,15], the world wide web [16,17], email
networks [18,19], peer-to-peer networks [20,21], power grids [22], telephone call
graphs [23], and train routes [24]. These graphs are certainly interesting in their
own right, and furthermore might loosely be regarded as social networks, since
their structure clearly reflects something about the structure of the society that
built them. However, their connection to the “true” social networks discussed
here is tenuous at best and so, for our purposes, they cannot offer a great deal
of insight.

A more promising source of data is the affiliation network. An affiliation
network is a network of actors connected by common membership in groups of
some sort, such as clubs, teams, or organizations. Examples studied in the past
include women and the social events they attend [25], company directors and
the boards of directors on which they sit [7,26], company CEOs and the clubs
they frequent [8], and movie actors and the movies in which they appear [22,27].
Data on affiliation networks tend to be more reliable than those on other social
networks, since membership of a group can often be determined with a precision
not available when considering friendship or other types of acquaintance. Very
large networks can be assembled in this way as well, since in many cases group
membership can be ascertained from membership lists, making time-consuming
interviews or questionnaires unnecessary. A network of movie actors, for example,
has been compiled using the resources of the Internet Movie Database,1 and
contains the names of nearly half a million actors—a much better sample on
which to perform statistics than most social networks, although it is unclear
whether this particular network has any real social interest.

1 http://www.imdb.com/.
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In this article we study in detail another affiliation network, one which is a
true social network, for which excellent data are available, and which further-
more will be of interest to readers for personal as well as scientific reasons. We
study networks in which the actors are scientists and the ties between them are
scientific collaborations, as documented in the papers that they write.

2 Coauthorship Networks

Here we construct networks of scientists in which a link between two scien-
tists is established by their coauthorship of one or more scientific papers. These
networks are affiliation networks in which actors are linked by their common
membership of groups consisting of the authors of a paper. They are more truly
social networks than many affiliation networks; it is probably fair to say that
most people who have written a paper together are genuinely acquainted with
one another, in a way that, for example, movie actors who appeared together
in a movie may not be. There are exceptions—some very large collaborations,
for example in high-energy physics, will contain coauthors who have never even
met—and we discuss these where appropriate. By and large, however, the net-
work reflects genuine professional interaction between scientists, and may be the
largest social network ever studied.2

The idea of constructing a network of coauthorship is not new. Many readers
will be familiar with the concept of the Erdős number, named for Paul Erdős, the
Hungarian mathematician, one of the founding fathers of graph theory, among
other things [29]. At some point, it became a popular cocktail party pursuit for
mathematicians to calculate how far removed they were in terms of publication
from Erdős. Those who had published a paper with Erdős were given a Erdős
number of 1, those who had published with one of those people but not with
Erdős, a number of 2, and so forth. The present author, for example, has an
Erdős number of 3, via Robert Ziff and Mark Kac [30–32]. In the jargon of
social networks, your Erdős number is the geodesic distance between you and
Erdős in the coauthorship network. In recent studies, it has been found that
the average Erdős number is about 4.7, and the maximum known finite Erdős
number (within mathematics) is 15 [33,34]. These results are probably influenced
to some extent by Erdős’ prodigious mathematical output: he published at least
1512 papers, more than any other mathematician ever except possibly Leonhard
Euler. However, quantitatively similar, if not quite so impressive, results are
in most cases found if the network is centered on another mathematician. (On
the other hand, fifth-most published mathematician, Lucien Godeaux, produced
644 papers, on 643 of which he was the sole author. He has no finite Erdős
number [35]. Clearly sheer size of output is not a sufficient condition for high
connectedness.)
2 If one considers the world wide web to be a social network (an issue of some de-

bate [28]), then it certainly dwarfs the networks studied here, with more than six
billion pages cataloged by the largest search engines at the time of writing.
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There is also a substantial body of work in bibliometrics (a specialty within
information science) on extraction of collaboration patterns from publication
data [36–41]. However, these studies have not so far attempted to reconstruct
actual collaboration networks from bibliographic data, concentrating more on
organizational and institutional aspects of collaboration.3

In this article, we study networks of scientists using bibliographic data drawn
from four publicly available databases of papers. The databases are:

1. Physics E-print Archive:4 a database of unrefereed preprints in physics, self-
submitted by their authors, running from 1991 to the present. This database
is subdivided into specialties within physics, such as condensed matter and
high-energy physics, and in more recent years has added divisions covering
nonlinear sciences, mathematics, computer science, and quantitative biology.

2. Medline:5 a database of articles on biomedical research published in refereed
journals, stretching from 1961 to the present. Entries in the database are up-
dated by the database’s maintainers, rather than papers’ authors, giving it
relatively thorough coverage of its subject area. The inclusion of biomedicine
is crucial in a study such as this one. In most countries biomedical research
easily dwarfs civilian research on any other topic, in terms of both expendi-
ture and human effort. Any study that omitted it would be leaving out the
largest part of current scientific research.

3. SPIRES:6 a database of preprints and published papers in high-energy
physics, both theoretical and experimental, from 1974 to the present. The
contents of this database are also professionally maintained. High energy
physics is an interesting case socially, having a tradition of much larger ex-
perimental collaborations than other disciplines.

4. NCSTRL:7 a database of preprints in computer science, submitted by par-
ticipating institutions and stretching back about ten years.

We have constructed networks of collaboration for each of these databases sep-
arately and analyzed them using a variety of techniques, some standard, some
invented for the purpose.

3 There has been a considerable amount of work on networks of citations between pa-
pers, both in information science [36,42,43] and more recently in physics [44]. These
networks, though often confused with coauthorship networks, are quite distinct from
them; in a citation network the “actors” are papers and the (directed) ties between
them are citations of one paper by another. While citation data are plentiful and
many results are known, citation networks are not really social networks since the
authors of two papers need not be acquainted for one of them to cite the other’s
work. On the other hand, citation probably does imply a certain congruence in the
subject matter of the two papers, which although not a social relationship, may
certainly be of interest for other reasons.

4 http://arxiv.org/
5 http://www.ncbi.nlm.nih.gov/
6 http://www.slac.stanford.edu/spires/
7 http://www.ncstrl.org/
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The outline of the article is as follows. In Sect. 3 we discuss some basic
statistics, to give a feel for the shape of our networks. Among other things
we discuss the typical numbers of papers per author, authors per paper, and
number of collaborators of scientists in the various disciplines. In Sect. 4 we
look at a variety of measures concerned with paths between scientists in the
network. In Sect. 5 we extend our networks to include a measure of the strength
of collaborative ties between scientists and examine measures of connectedness
in these weighted networks. In Sect. 6 we give our conclusions. This article is an
updated and extended version of an earlier two-part report [45,46].

3 Basic Results

For this study, we constructed collaboration networks using data from a five-
year period from January 1, 1995 to December 31, 1999, although data for much
longer periods were available in some of the databases. There were several rea-
sons for using this fairly short time window. First, older data are less complete
than newer for all databases. Second, we wanted to study the same time period
for all databases, so as to be able to make valid comparisons between collabo-
ration patterns in different fields. The coverage provided by both the Physics
E-print Archive and the NCSTRL database is relatively poor before 1995, and
this sets a limit on how far back we can look. Third, the networks change over
time, both because people enter and leave the professions they represent and
because practices of scientific collaboration and publishing change. In this ar-
ticle we do not address time evolution of the network, although this has been
done elsewhere [47,48]. For our purposes, a short window of data is desirable, to
ensure that the collaboration network is roughly static during the study.

The raw data for the networks described here are computer files containing
lists of papers, including authors’ names and possibly other information such as
title, abstract, date, journal reference, and so forth. Construction of the collabo-
ration networks is straightforward. The files are parsed to extract author names
and as names are found a list is maintained of the ones seen so far—vertices
already in the network—so that recurring names can be correctly assigned to
extant vertices. An edge is added between each pair of authors on each paper,
unless there is an edge between them already. (In other words, we allow only a
single edge between any pair of authors, even if they write more than one paper
together. In Sect. 5 we will consider more general networks that take repeated
coauthorship into account.)

A naive computer program implementing this procedure, in which names
were stored in a simple array, would take time O(pn) to run to completion,
where p is the total number of papers in the database and n the number of
authors. This however turns out to be prohibitively slow for large networks since
p and n are of similar size and may be a million or more. Instead therefore,
we store the names of the authors in an ordered binary tree, which reduces the
running time to O(p log n), making the calculation tractable, even for the largest
databases studied here.
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In Table 1 we give a summary of some of the basic results for the networks
studied here. We discuss these results in detail in the rest of this section.

3.1 Number of Authors

The size of the databases varies considerably, from over a million authors for
Medline to about ten thousand for NCSTRL. In fact, it is difficult to say with
precision how many authors there are. One can say how many distinct names
appear in a database, but the number of names is not necessarily the same as the
number of authors. A single author may report their name differently on different
papers. For example, F. L. Wright, Francis Wright, and Frank Lloyd Wright
could all be the same person. The spelling of a name may also vary because
of inconsistencies in transliteration from non-Roman alphabets. Conversely, two
authors may have the same name. Grossman and Ion [35] point out that there are
two American mathematicians named Norman Lloyd Johnson, who are known to
be distinct people and who work in different fields, but between whom computer
programs such as ours cannot hope to distinguish. Even additional clues such as
home institution or field of specialization cannot reliably be used to distinguish
such people, since many scientists have more than one institution or publish
in more than one field. The present author, for example, has addresses at the
University of Michigan and the Santa Fe Institute, and publishes in statistical
physics, sociology, and epidemiology.

In order to control for these biases, we constructed two different versions
of each of the collaboration networks studied here, as follows. In the first, we
identify each author by his or her surname and first initial only. This method
is clearly prone to confusing two people for one, but will rarely fail to identify
two names which genuinely refer to the same person. In the second version of
each network, we identify authors by surname and all initials. This method can
much more reliably distinguish authors from one another, but will also identify
one person as two if they give their initials differently on different papers. Indeed
this second measure appears to overestimate the number of authors in a database
substantially. Networks constructed in these two different fashions therefore give
upper and lower bounds on the number of authors, and hence also give bounds on
many of the other quantities studied here. In Table 1 we give numbers of authors
in each network using both methods, but for many of the other quantities we
give only an error estimate based on the separation of the bounds.

3.2 Number of Papers per Author

The average number of papers per author in the various subject areas is in
the range of around three to six over the five-year period. The only exception
is the SPIRES database, covering high-energy physics, in which the figure is
significantly higher at 11.6. One possible explanation for this is that SPIRES
is the only database that contains both preprints and published papers. It is
possible that the high figure for papers per author reflects duplication of papers
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Fig. 1. Histograms of the number of papers written by authors in Medline (circles),
the physics archive (squares), and NCSTRL (triangles). The dotted lines are fits to the
data as described in the text. Inset: the equivalent histogram for the SPIRES database.

in both preprint and published form. However, the maintainers of the database
go to some lengths to avoid this [49], and a more probable explanation is perhaps
that publication rates are higher for the large collaborations favored by high-
energy physics, since a large group of scientists has more person-hours available
for the writing of papers.8

In addition to the average numbers of papers per author in each database, it
is interesting to look at the distribution pk of numbers k of papers per author.
In 1926, Alfred Lotka showed, using a dataset compiled by hand, that this dis-
tribution followed a power law, with exponent approximately −2, a result which
is now referred to as Lotka’s Law of Scientific Productivity [50]. In other words,
in addition to the many authors who publish only a small number of papers,
one expects to see a “fat tail” consisting of a small number of authors who
publish a very large number of papers. In Fig. 1 we show on logarithmic scales
histograms for each of our four databases of the numbers of papers published.
(These histograms and all the others shown here were created using the “all
initials” versions of the collaboration networks.) For the Medline and NCSTRL
databases these histograms follow a power law quite closely, at least in their

8 We can test this hypothesis by dividing the total number of papers over the five-year
period in any one of our networks by the total number of authors to get a mean
“effort” figure for the number of papers produced by the community per author.
From Table 1, this figure is 1.2 for SPIRES, compared to 1.1, 1.4, and 1.9 for
NCSTRL, Medline, and the physics archive respectively. Thus the mean effort per
person indeed has roughly the same value in high-energy physics as it has in other
fields, or is even perhaps a little lower than the average.
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tails, with exponents of −2.86(3) and −3.41(7) respectively—somewhat steeper
than those found by Lotka, but in reasonable agreement with other more recent
studies [51,52,36]. For the physics archive the pure power law is a poor fit. An
exponentially truncated power law does much better:

pk = Ck−τe−k/κ, (1)

where τ and κ are constants and C is fixed by the requirement of normalization—
see Fig. 1. (The probability p0 of having zero papers is taken to be zero, since
the names of scientists who have not written any papers do not appear in the
database.) The exponential cutoff we attribute to the finite time window of five
years used in this study which prevents any one author from publishing a very
large number of papers. Lotka and subsequent authors who have confirmed his
law have not usually used such a window.

It is interesting to speculate why the cutoff appears only in physics and not
in computer science or biomedicine. Surely the five-year window limits every-
one’s ability to publish very large numbers of papers, regardless of their area of
specialization? For the case of Medline one possible explanation is suggested by
a brief inspection of the names of the most published authors. The top ten, for
example, are Suzuki, T., Wang, Y., Suzuki, K., Takahashi, M., Nakamura, T.,
Tanaka, K., Tanaka, T., Wang, J., Suzuki, Y., and Takahashi, T. The predomi-
nance of Japanese names in this list may reflect differences in author attribution
practices in Japanese biomedical research, but more probably these are simply
common names, and these apparently highly published authors are each several
different people who have been conflated in our analysis. (One could perform a
partial test of this conjecture by going back to the original articles and checking
cases in which authors gave their full first names, rather than just an initial, to
see if those names differ in some cases.) Thus it is possible that there is not after
all any fat tail in the distribution for the Medline database, only the illusion of
one produced by the large number of scientists with commonly occurring names.
(This doesn’t however explain why the tail appears to follow a power law.) This
argument is strengthened by the sheer numbers of papers involved. T. Suzuki
published, it appears, 1697 papers, or about one paper a day, including weekends
and holidays, every day for the entire five-year course of our study. This seems
to be an improbably large output.

Interestingly, no national bias is seen in any of the other databases, and
the names that top the list in physics and computer science are not common
ones. (For example, the most published authors in the other three databases are
Shelah, S. (physics archive),9 Wolf, G. (SPIRES), and Bestavros, A. (NCSTRL).)
Thus it is still unclear why the NCSTRL database should have a power-law tail,
though this database is small and it is possible that it does possess a cutoff in
the productivity distribution which is just not visible because of the limits of
the dataset.

For the SPIRES database, which is shown separately in the inset of the figure,
neither pure nor truncated power law fits the data well, the histogram displaying
9 A mathematician, not a physicist.
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a significant bump around the 100-paper mark. A possible explanation for this
is that a small number of large collaborations published around this number of
papers during the time-period studied. Since each author in such a collaboration
is then credited with publishing a hundred papers, the statistics in the tail of
the distribution can be substantially skewed by such practices.

In the first column of Table 2, we list the most frequent authors in three
subject-specific subdivisions of the physics archive: astro-ph (astro-physics),
cond-mat (condensed matter physics), and hep-th (high-energy theory). Al-
though there is only space to list the top ten winners in this table, the entire list
(and the corresponding lists for the other tables in this article) can be found by
the curious reader on the world wide web.10

3.3 Numbers of Authors per Paper

Grossman and Ion [35] report that the average number of authors on papers in
mathematics has increased steadily over the last sixty years, from a little over
1 to its current value of about 1.5. As Table 1 shows, still higher numbers seem
to apply to current studies in the sciences. Purely theoretical papers appear to
be typically the work of two scientists, with high-energy theory and computer
science showing averages of 1.99 and 2.22 in our calculations. For databases cov-
ering experimental or partly experimental subject areas the averages are higher:
3.75 for biomedicine, 3.35 for astrophysics, 2.66 for condensed matter physics.
The SPIRES high-energy physics database however shows the most startling
results, with an average of 8.96 authors per paper, obviously a result of the pres-
ence of papers in the database written by very large collaborations. (Perhaps
what is most surprising about this result is actually how small it is. The hun-
dreds strong mega-collaborations of CERN and Fermilab are sufficiently diluted
by theoretical and smaller experimental groups, that the number is only 9, and
not 90.)

Distributions of numbers of authors per paper are shown in Fig. 2, and ap-
pear to have power-law tails with widely varying exponents of −6.2(3) (Medline),
−3.34(5) (physics archive), −4.6(1) (NCSTRL), and −2.18(7) (SPIRES). The
SPIRES data, which are again shown in a separate inset, display a pronounced
peak in the distribution around 200–500 authors. This peak presumably corre-
sponds to the large experimental collaborations which dominate the upper end
of this histogram.

The largest number of authors on a single paper was 1681 (in high-energy
physics, of course).

3.4 Numbers of Collaborators per Author

The differences between the various disciplines represented in the databases are
emphasized still more by the numbers of collaborators that a scientist has, the
10 Complete tables of results for authors in the Physics E-print Archive can be found

on the world wide web at http://www.santafe.edu/˜mark/collaboration/.
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Fig. 2. Histograms of the number of authors on papers in Medline (circles), the physics
archive (squares), and NCSTRL (triangles). The dotted lines are the best fit power-law
forms. Inset: the equivalent histogram for the SPIRES database, showing a clear peak
in the 200 to 500 author range.

total number of people with whom a scientist wrote papers during the five-year
period. The average number of collaborators is markedly lower in the purely
theoretical disciplines (3.87 in high-energy theory, 3.59 in computer science)
than in the wholly or partly experimental ones (18.1 in biomedicine, 15.1 in
astrophysics). But the SPIRES high-energy physics database takes the prize
once again, with scientists having an impressive 173 collaborators, on average,
over a five-year period. This clearly begs the question whether the high-energy
coauthorship network can be considered an accurate representation of the social
network of the high-energy physics community; it seems unlikely that an author
could know 173 colleagues well.

The distributions of numbers of collaborators are shown in Fig. 3. In all cases
they appear to have long tails, but only the SPIRES data (inset) fit a power-law
distribution well, with a low measured exponent of −1.20. Note also the small
peak in the SPIRES data around 700—presumably again a product of the large
collaborations.

For the other three databases, the distributions show some curvature. This
may, as we have previously suggested, be the signature of an exponential cutoff,
produced once again by the finite time window of the study [53]. Redner (per-
sonal communication) and Barabási et al. [48] have independently suggested
alternative explanations based on growth models of networks, although the fun-
damental causative agent is the same finite time window in these theories also.

Column 2 of Table 2 shows the authors in astro-ph, cond-mat, and hep-th

with the largest numbers of collaborators. The winners in this race tend to be
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Fig. 3. Histograms of the number of collaborators of authors in Medline (circles), the
physics archive (squares), and NCSTRL (triangles). Inset: the equivalent histogram for
the SPIRES database, which is well fit by a power law (dotted line).

experimentalists, who conduct research within larger collaborations, although
there are exceptions. The high-energy theory database of course contains only
theorists, and the smaller numbers of collaborators reflect this.

3.5 Size of the Giant Component

In the theory of random graphs it is known that there is a continuous phase tran-
sition with increasing density of edges in a graph at which a giant component
forms, i.e., a connected subset of vertices whose size scales extensively [54,55].
Well above this transition, in the region where the giant component exists, the
giant component usually fills a large portion of the graph, and all other compo-
nents (i.e., connected subsets of vertices) are small with mean size independent
of the size of the network. We see a situation reminiscent of this in all of the
graphs studied here: a single large component of connected vertices that fills the
majority of the volume of the graph, and a number of much smaller components
filling the rest. In Table 1 we show the size of the giant component for each of
our databases, both as total number of vertices and as a fraction of system size.
In all cases the giant component fills around 80% or 90% of the total volume,
except for high-energy theory and computer science, which give smaller figures.
A possible explanation of these two anomalies may be that the correspond-
ing databases give poorer coverage of their subjects. The hep-th high-energy
database is quite widely used in the field, but overlaps to a large extent with
the longer established SPIRES database, and it is possible that some authors
neglect it for this reason [49]. The NCSTRL computer science database differs
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from the others in this study in that the preprints it contains are submitted by
participating institutions, of which there are about 160. Preprints from institu-
tions not participating are mostly left out of the database, and its coverage of
the subject area is, as a result, incomplete.

The figure of 80–90% for the size of the giant component is a promising one.
It indicates that the vast majority of scientists are connected via collaboration,
and hence via personal contact, with the rest of their field. Despite the prevalence
of journal publishing and conferences in the sciences, person-to-person contact
is still of paramount importance in the communication of scientific information,
and it is reasonable to suppose that the scientific enterprise would be significantly
hindered if scientists were not so well connected to one another.

3.6 Clustering Coefficients

An interesting idea from social network theory is that of transitivity, which, along
with its sibling structural balance, describes symmetry of interaction amongst
trios of actors. “Transitivity” has a different meaning in sociology from its mean-
ing in mathematics and physics, although the two are related. It refers to the
extent to which the existence of ties between actors A and B and between ac-
tors B and C implies a tie between A and C. The transitivity, or more precisely
the fraction of transitive triples, is that fraction of connected triples of vertices
which also form “triangles” of interaction. Here a connected triple means an
actor who is connected to two others. In the physics literature, this quantity is
usually called the clustering coefficient C [22], and can be written11

C =
3× number of triangles on the graph

number of connected triples of vertices
. (2)

The factor of three in the numerator compensates for the fact that each complete
triangle of three vertices contributes three connected triples, one centered on each
of the three vertices, and ensures that C = 1 on a completely connected graph.
On unipartite random graphs C = O(n−1), where n is the number of vertices,
and hence goes to zero in the limit of large graph size [22,6]. In social networks it
is believed that the clustering coefficient will take a non-zero value even in very
large networks, because there is a finite (and probably quite large) probability
that two people will be acquainted if they have another acquaintance in common.
This is a hypothesis we can test with our collaboration networks. In Table 1 we
show values of the clustering coefficient C, calculated from (2), for each of the
databases studied, and as we see, the values are indeed large—as large as 0.7 in
the case of the SPIRES database and around 0.3 or 0.4 for most of the others.

There are a number of possible explanations for these high values of C.
First of all, it may be that they indicate simply that collaborations of three or
more people are common in science. Every paper that has three authors clearly
contributes a triangle to the numerator of (2) and hence increases the clustering
11 This is one of two slightly different definitions of the clustering coefficient that are

in use. See, for instance, [6].
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coefficient. This is, in a sense, a “trivial” form of clustering, although it is by no
means socially uninteresting.

In fact it turns out that this effect can account for some but not all of the
clustering seen in our graphs. One can construct a random graph model of a
collaboration network which mimics the trivial clustering effect, and the results
indicate that only about a half of the clustering we see is a result of authors
collaborating in groups of three or more [56]. The rest of the clustering must
have a social explanation, and there are some obvious possibilities:

1. A scientist may collaborate with two colleagues individually, who may then
become acquainted with one another through their common collaborator,
and so end up collaborating themselves. This is the usual explanation for
transitivity in acquaintance networks [1].

2. Three scientists may all revolve in the same circles—read the same journals,
attend the same conferences—and, as a result, independently start up sep-
arate collaborations in pairs, and so contribute to the value of C, although
only the workings of the community, and not any specific person, is respon-
sible for introducing them.

3. As a special case of the previous possibility—and perhaps the most likely
case—three scientists may all work at the same institution, and as a result
may collaborate with one another in pairs.

Interesting studies could no doubt be made of these processes by combining
our network data with data on, for instance, institutional affiliations of scien-
tists. Such studies are, however, perhaps better left to the social scientists who
specialize in them.

The clustering coefficient of the Medline database is worthy of brief mention,
since its value is far smaller than those for the other databases. One possible
explanation of this comes from the unusual social structure of biomedical re-
search, which, unlike the other sciences, has traditionally been organized into
laboratories, each with a principal investigator supervising a large number of
postdocs, students, and technicians working on different projects. This organi-
zation produces a tree-like hierarchy of collaborative ties with fewer interactions
within levels of the tree than between them. A tree has no loops in it, and hence
no triangles to contribute to the clustering coefficient. Although the biomedicine
hierarchy is certainly not a perfect tree, it may be sufficiently tree-like for the
difference to show up in the value of C. Another possible explanation comes from
the generous tradition of authorship in the biomedical sciences. It is common,
for example, for a researcher to be made a coauthor of a paper in return for
synthesizing reagents used in an experimental procedure. Such a researcher will
in many cases have a less than average likelihood of developing new collabora-
tions with their collaborators’ friends, and therefore of increasing the clustering
coefficient.
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4 Distances and Centrality

The basic statistics of the previous section are certainly of importance, par-
ticularly for the construction of network models [22,56–59], but there is much
more that we can do with our collaboration networks. In this section, we look
at some simple but useful measures of network structure, concentrating on mea-
sures having to do with paths between vertices in the network. In Sect. 5 we
discuss some shortcomings of these measures, and construct some new and more
complex measures that may better reflect true collaboration patterns.

4.1 Shortest Paths

A fundamental concept in graph theory is the geodesic, the shortest path of
vertices and edges that links two given vertices. There may not be a unique
geodesic between two vertices: there may be two or more shortest paths, which
may or may not share some vertices. Or there may be no paths between the
vertices at all. The geodesic(s) between two vertices s and t can be calculated
in time O(m), where m is the number of edges in the graph, using the following
algorithm, which is a modified form of the standard breadth-first search [60].

1. Assign vertex s distance zero, to indicate that it is zero steps away from
itself, and set d = 0.

2. For each vertex i whose assigned distance is d, follow each attached edge to
the vertex j at its other end and then do one of the following three things:
a) If j has not already been assigned a distance, assign it distance d + 1.

Declare i to be a predecessor of j.
b) If j has already been assigned distance d + 1, then there is no need to

do this again, but i is still declared a predecessor of j.
c) If j has already been assigned a distance less than d+ 1, do nothing.

3. Set d← d+ 1.
4. Repeat from step (2) until there are no unassigned vertices left.

Now the shortest path (if there is one) between s and t is the path you get by
stepping from t to its predecessor, and then to the predecessor of each successive
vertex until s is reached. If a vertex has two or more predecessors, then there
are two or more shortest paths, each of which must be followed separately if we
wish to know all shortest paths between s and t.

In Fig. 4 we show the shortest paths of known collaborations between two of
the author’s colleagues, Duncan Watts (Columbia) and László Barabási (Notre
Dame), both of whom work on networks of various kinds. It is interesting to
note that, although the two scientists in question are well acquainted both per-
sonally and with one another’s work, the shortest path between them does not
run entirely through other collaborations in the field. (For example, the con-
nection between the present author and Juan Pedro Garrahan results from our
coauthorship of a paper on spin glasses.) Although this may at first sight appear
odd, it is probably in fact a good sign. It indicates that workers in the field come
from different scientific camps, rather than all descending intellectually from a
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Barabasi, A.-L.

Cuerno, R.Amaral, L. A. N.Stanley, H. E.

Lauritsen, K. B.

Watts, D. J.

Newman, M. E. J.

Sneppen, K. Garrahan, J. P.

Moro, E.

Fig. 4. The geodesics, or shortest paths, in the collaboration network of physicists
between Duncan Watts and László Barabási.

single group or institution. This presumably increases the likelihood that those
workers will express independent opinions on the open questions of the field,
rather than merely spouting slight variations on the same underlying doctrine.

A database that would allow one conveniently and quickly to extract shortest
paths between scientists in this way might have some practical use. Kautz et al.
[61] have constructed a web-based system which does just this for computer
scientists, with the idea that such a system might help to create new professional
contacts by providing a “referral chain” of intermediate scientists through whom
contact may be established.

4.2 Betweenness and Funneling

A quantity of interest in many social network studies is the betweenness of an
actor i, which is defined as the total number of shortest paths between pairs of
actors that pass through i [62]. This quantity is one possible indicator of who the
most influential people in the network are. In a network in which information
flows entirely or mostly along the shortest paths between actors, those with
highest betweenness are the ones who control the flow of information between
most others. The vertices with highest betweenness also produce an increase
in the geodesic distance between the largest number of pairs of others when
removed from the network [1].

Naively, one might think that betweenness would take time of order O(mn2)
to calculate for all vertices, since there are O(n2) shortest paths to be consid-
ered, each of which takes time O(m) to calculate, and until recently the stan-
dard network analysis packages such as UCInet and Pajek indeed used O(mn2)
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of vertices), and then use these to weight the path counts appropriately and derive the
betweenness scores (numbers to right of vertices).

algorithms. Recently however, faster algorithms for betweenness have been dis-
covered by the present author [46] and independently by Brandes [63]. These
algorithms can perform the same calculation in time O(mn). Here we describe
the algorithm of Newman [46], which is fast enough to allow the exhaustive
calculation of betweenness for all vertices in the very large graphs studied here.

We start by performing a breadth-first search to determine the set of shortest
paths from some source vertex s to all other vertices that are reachable from s.
Consider first the simple case of a network in which there is only a single shortest
path from the source vertex to any other. (We will consider other cases in a
moment.) The resulting set of paths then forms a tree as shown in Fig. 5a. We
can use this tree to calculate betweenness as follows. We find first the “leaves” of
the tree, i.e., those nodes such that no shortest paths to other nodes pass through
them, and we assign a score of 1 to them—the only path to these vertices is the
one that ends there. Then, starting with those vertices that are farthest from the
source vertex s on the tree, i.e., lowest in Fig. 5a, we work upwards, assigning
a score to each vertex that is 1 plus the sum of the scores on the neighboring
vertices immediately below it. When we have gone though all vertices in the tree,
the resulting scores are the betweenness counts for the paths from vertex s. (In
our calculation we define paths to include the vertices at their ends. Sometimes
they are defined to exclude these vertices, in which case the score at each vertex
is decreased by 1, except for the source vertex s, which receives a score of zero.)
Repeating the process for all possible vertices s and summing the scores, we
arrive at the full betweenness scores for shortest paths between all pairs. The
breadth-first search and the process of working up through the tree both take



Who Is the Best Connected Scientist? 355

worst-case time O(m) and there are n vertices total, so the entire calculation
takes time O(mn) as claimed.

This simple case serves to illustrate the basic principle behind the algorithm.
In general, however, it is not the case that there is only a single shortest path
between any pair of vertices. Most networks have at least some vertex pairs
between which there are several geodesic paths of equal length. Figure 5b shows
a simple example of a shortest path “tree” for a network with this property. The
resulting structure is in fact no longer a tree, and in such cases an extra step is
required in the algorithm to correctly calculate the betweenness.

Following Freeman’s original definition of betweenness [62], we give multiple
shortest paths between a pair of vertices equal weights summing to 1. Note that
some of the paths may run through the same vertices for some part of their
length, resulting in vertices with greater weight. To calculate correctly what
fraction of the paths flow through each vertex in the network, we generalize the
breadth-first search part of our algorithm, as follows.

Consider Fig. 5b and suppose we are starting at vertex s. We carry out the
following steps:

1. Assign vertex s distance zero, to indicate that it is zero steps from itself, and
set d = 0. Also assign s a weight ws = 1 (whose purpose will become clear
shortly).

2. For each vertex i whose assigned distance is d, follow each attached edge to
the vertex j at its other end and then do one of the following three things:
a) If j has not yet been assigned a distance, assign it distance d + 1 and

weight wj = wi.
b) If j has already been assigned a distance and that distance is equal to
d+ 1, then the vertex’s weight is increased by wi, that is wj ← wj +wi.

c) If j has already been assigned a distance less than d+ 1, do nothing.
3. Set d← d+ 1.
4. Repeat from step 2 until there are no vertices that have distance d.

The resulting weights for the example of Fig. 5b are shown to the left of each
vertex in the figure.

Physically, the weight on a vertex i represents the number of distinct paths
from the source vertex to i. These weights are precisely what we need to calculate
our betweennesses, because if two vertices i and j are connected, with j farther
than i from the source s, then the fraction of a geodesic path from j through i
to s is given by wi/wj . Thus, to calculate the contribution to the betweenness
from all shortest paths starting at s, we need only carry out the following steps:

1. Find every “leaf” vertex t, i.e., a vertex such that no paths from s to other
vertices go though t and assign it a score of xt = 1.

2. Now, starting with the vertices that are farthest from the source vertex s—
lower down in a diagram such as Fig. 5b—work up towards s. To each vertex
i assign a score xi = 1 +

∑
j xjwi/wj , where the sum is over the neighbors

j immediately below vertex i.
3. Repeat from step 2 until vertex s is reached.



356 M.E.J. Newman

The resulting scores are shown to the right of each vertex in Fig. 5b. Now
repeating this process for all n source vertices s and summing the resulting
scores on the vertices gives us the total betweenness for all vertices in time
O(mn).

We have applied this algorithm to our coauthorship networks and in column
3 of Table 2 we show the ten highest betweennesses in the astro-ph, cond-mat,
and hep-th subdivisions of the physics archive. While we leave it to the knowl-
edgeable reader to decide whether the scientists named are indeed pivotal figures
in their respective fields, we do notice one interesting feature of the results. The
betweenness measure gives very clear winners in the competition: the individuals
with highest betweenness are well ahead of those with second highest, who are in
turn well ahead of those with third highest, and so on. This same phenomenon
has been noted in other networks [1,64].

Strogatz has raised an interesting question about social networks which we
can address using our betweenness algorithm: are all of your collaborators equally
important for your connection to the rest of the world, or do most paths from
others to you pass through just a few of your collaborators (S. H. Strogatz,
personal communication)? One could certainly imagine that the latter might be
true. Collaboration with just one or two senior or famous members of one’s field
could easily establish short paths to a large part of the collaboration network, and
all of those short paths would go through those one or two members. Strogatz
calls this effect “funneling.” Since our algorithm, as a part of its operation,
calculates the vertices through which each geodesic path to a specified actor
passes, it is a trivial modification to calculate also how many of those geodesic
paths pass through each of the immediate collaborators of that actor, and hence
to use it to look for funneling.

Our collaboration networks, it turns out, show strong funneling. For most
people, their top few collaborators lie on most of the paths between themselves
and the rest of the network. The rest of their collaborators, no matter how
numerous, account for only a small number of paths. Consider, for example,
the present author. Out of the 44 000 scientists in the giant component of the
physics archive collaboration network, 31 000 paths from them to me, about 70%,
pass through just two of my collaborators, Chris Henley and Juanpe Garrahan.
Another 13 000, most of the remainder, pass through the next four collaborators.
The remaining five account for a mere 1% of the total.

To give a more quantitative impression of the funneling effect, we show in
Fig. 6 the average fraction of paths that pass through the top 10 collaborators
of an author, averaged over all authors in the giant component of the Physics
database. The figure shows for example that on average 64% of one’s shortest
paths to other scientists pass through one’s top-ranked collaborator. Another
17% pass through the second-ranked collaborator. The top 10 shown in the
figure account for 98% of all paths.

That one’s top few acquaintances account for most of one’s shortest paths
to the rest of the world has been noted before in other contexts. For example,
Stanley Milgram, in his famous “small-world” experiment, noted that most of
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Fig. 6. The average percentage of paths from other scientists to a given scientist that
pass through each collaborator of that scientist, ranked in decreasing order. The plot is
for the physics archive network, although similar results are found for other networks.

the paths he found to a particular target person in an acquaintance network
went through just one or two acquaintances of the target [65]. He called these
people “sociometric superstars.”

4.3 Average Distances

Breadth-first search allows to us calculate exhaustively the lengths of the shortest
paths from every vertex on a graph to every other in time O(mn). We have done
this for each of the networks studied here and averaged these distances to find the
average distance between any pair of (connected) authors in each of the subject
fields studied. These figures are given in the penultimate row of Table 1. As the
table shows, these figures are all quite small: they vary from 4.0 for SPIRES to
9.7 for NCSTRL, although this last figure may be artificially inflated by the poor
coverage of this database discussed in Sect. 3.5. At any rate, all the figures are
very small compared to the number of vertices in the corresponding databases.
This “small-world effect,” famously discussed by Milgram [65] and by Pool and
Kochen [66], is, like the existence of the giant component, probably a good
sign for science; it shows that scientific information—discoveries, experimental
results, theories—will not have far to travel through the network of scientific
acquaintance to reach the ears of those who can benefit by it. Even the maximum
distances between scientists in these networks, shown in the last row of the table,
are not very large, the longest path in any of the networks being just 31 steps
long, again in the NCSTRL database.

The explanation of the small-world effect is simple. Consider Fig. 7, which
shows all the collaborators of the present author (in all subjects, not just
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Fig. 7. The point in the center of the figure represents the author of the article you
are reading, the first ring his collaborators, and the second ring their collaborators.
Collaborative ties between members of the same ring, of which there are many, have
been omitted from the figure for clarity.

physics), and all the collaborators of those collaborators—all my first and sec-
ond neighbors in the collaboration network. As the figure shows, I have 35 first
neighbors, but 891 second neighbors. The “radius” of the whole network around
me is reached when the number of neighbors within that radius equals the num-
ber of scientists in the giant component of the network, and if the increase in
numbers of neighbors with distance continues at the impressive rate shown in
the figure, it will not take many steps to reach this point.

This simple idea is borne out by theory. In almost all networks, the average
distance between pairs of vertices � scales logarithmically with the number of
vertices n. In a standard random graph, for instance [54,55], � = log n/ log z,
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Fig. 8. Average distance between pairs of scientists in the various networks, plotted
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The dotted line shows where the points would fall if measured and predicted results
agreed perfectly. The solid line is the best straight-line fit to the data.

where z is the average degree of a vertex, the average number of collaborators
in our terminology. In the more general class of random graphs in which the
distribution of vertex degrees is arbitrary [67–70], rather than Poissonian as in
the standard case, the equivalent expression is [56,71]

� =
log(n/z1)
log(z2/z1)

+ 1, (3)

where z1 and z2 are the average numbers of first and second neighbors of a vertex.
It is widely assumed that this logarithmic behavior extends to most networks,
so the small-world effect is not a surprise to those familiar with graph theory.
However, it would be nice to demonstrate explicitly the presence of logarithmic
scaling in our networks. Figure 8 does this in a crude fashion. In this figure
we have plotted the measured value of �, as given in Table 1, against the value
given by (3) for each of our four databases, along with separate points for nine of
the subject-specific subdivisions of the physics archive. As the figure shows, the
correlation between measured and predicted values is quite good. The correlation
coefficient is R2 = 0.86, rising to R2 = 0.95 if the NCSTRL database, with its
incomplete coverage, is excluded (the diamond in the figure).

Figure 8 needs to be taken with a pinch of salt. Its construction implicitly
assumes that the different networks are statistically similar to one another and to
the random graphs with the same distributions of vertex degree, an assumption
which is almost certainly not correct. Nonetheless, the fact that even with such
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Fig. 9. Scatter plot of the mean distance from each physicist in the giant component
of the physics archive network to all others as a function of number of collaborators.
Inset: the same data averaged vertically over all authors having the same number of
collaborators.

inherent errors the logarithmic behavior is still clearly visible lends at least some
credence to its graph theoretical basis.

We can also trivially use our breadth-first search algorithm to calculate the
average distance from a single vertex to all other vertices in the giant component.
This average is essentially the same as the quantity known as closeness centrality
to social network analysts.12 Like betweenness it is also a measure, in some sense,
of the centrality of a vertex—authors with low values of this average will, it is
assumed, be the first to learn new information, and information originating with
them will reach others quicker than information originating with other sources.
Average distance is thus a measure of centrality of an actor in terms of their
access to information, whereas betweenness is a measure of an actor’s control
over information flowing between others.

Calculating average distance for many networks returns results which look
sensible to the observer. Calculations for the network of collaborations be-
tween movie actors, for instance, give small average distances for actors who
are famous—ones many of us will have heard of. Interestingly, however, per-
forming the same calculation for our scientific collaboration networks does not
give exactly the results we might expect. For example, one finds that the people
at the top of the list are always experimentalists. This, you might think, is not
such a bad thing: perhaps the experimentalists are better connected people? In
a sense, in fact, it turns out that they are. In Fig. 9 we show the average dis-
tance from scientists in the physics archive to all others in the giant component

12 Technically, closeness is the reciprocal of the average distance to other vertices [1].
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as a function of their number of collaborators. As the figure shows, there is a
clear trend towards shorter average distance as the number of collaborators be-
comes large. This trend is clearer still in the inset, where we show the same data
averaged over all authors who have the same number of collaborators. Since ex-
perimentalists often work in large groups, it is not surprising to learn that they
tend to have shorter average distances to other scientists.

But this brings up an interesting question, one that we touched upon in
Sect. 2: while most pairs of people who have written a paper together will know
one another reasonably well, there are exceptions. On a high-energy physics
paper with 1000 coauthors, for instance, it is unlikely that every one of the
499 500 possible acquaintanceships between pairs of those authors will actually
be realized. Our closeness measure does not take into account the tendency for
collaborators in large groups not to know one another, or to know one another
less well. In the next section we describe a more sophisticated calculation which
does do this.

5 Weighted Collaboration Networks

There is more information present in the databases used here than in the simple
networks we have constructed from them, which tell us only whether scientists
have collaborated or not. In particular, we also know on how many papers each
pair of scientists collaborated during the period of the study, and how many
other coauthors they had on each of those papers.13 We can use this information
to make an estimate of the strength of collaborative ties.

First of all, it is probably the case, as we pointed out at the end of the
previous section, that two scientists whose names appear on a paper together
with many other coauthors know one another less well on average than two
who were the sole authors of a paper. The extreme case which we discussed
of a very large collaboration illustrates this point forcefully, but it applies to
smaller collaborations too. Even on a paper with four or five authors, the authors
probably know one another less well on average than authors on a paper with
fewer. To account for this effect, we weight collaborative ties inversely according
to the number of coauthors as follows. Suppose a scientist collaborates on the
writing of a paper that has n authors in total, i.e., he or she has n− 1 coauthors
on that paper. Then we assume that he or she is acquainted with each coauthor
1/(n− 1) times as well, on average, as if there were only one coauthor. One can
imagine this as meaning that the scientist divides his or her time equally between
the n− 1 coauthors. This is obviously only a rough approximation: in reality a
scientist spends more time with some coauthors than with others. However, in
the absence of other data, it is the obvious first approximation to make.
13 In fact, the full coauthorship pattern is, like all affiliation networks, most properly

represented as a bipartite graph with two kinds of vertices representing scientists
and papers, and edges running between scientists and the papers on which their
name appears as a coauthor. We have investigated this representation elsewhere [56,
71].
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Second, authors who have written many papers together will, we assume,
know one another better on average than those who have written few papers
together. To account for this, we add together the strengths of the ties derived
from each of the papers written by a particular pair of individuals. Thus, if δki is
one if scientist i was a coauthor of paper k and zero otherwise, then our weight
wij representing the strength of the collaboration (if any) between scientists i
and j is

wij =
∑

k

δki δ
k
j

nk − 1
, (4)

where nk is the number of coauthors of paper k and we explicitly exclude from
our sums all single-author papers. (They do not contribute to the coauthorship
network, and their inclusion in (4) would make wij ill-defined.) We illustrate this
measure for a simple example in Fig. 10.

Note that the equivalent of vertex degree for our weighted network—i.e., the
sum of the weights for each of an individual’s collaborations—is now just equal
to the number of papers they have coauthored with others:

∑

j( 	=i)
wij =

∑

k

∑

j( 	=i)

δki δ
k
j

nk − 1
=

∑

k

δki . (5)

In Fig. 11 we show as an example collaborations between Gerard Barkema
(one of the present author’s frequent collaborators) and all of his collaborators
in the physics archive for the five years of our study. Lines between points rep-
resent collaborations, with their thickness proportional to the weights wij of
(4). As the figure shows, Barkema has collaborated closely with myself and with
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Fig. 11. Gerard Barkema and his collaborators, with lines representing collaborations
whose thickness is proportional to our estimate, (4), of the strength of the corresponding
tie.

Normand Mousseau, and less closely with a number of others. Also, two of his
collaborators, John Cardy and Gesualdo Delfino, have collaborated quite closely
with one another.

In the last column of Table 2 we show the pairs of collaborators who have
the strongest collaborative ties in three subdivisions of the physics archive.

We have used our weighted collaboration graphs to calculate distances be-
tween scientists. In this simple calculation we assumed that the distance between
authors is just the inverse of the weight of their collaborative tie. Thus if one
pair of authors know one another twice as well as another pair, the distance
between them is half as great. Calculating minimum distances between vertices
on a weighted graph such as this cannot be done using the breadth-first search
algorithm of Sect. 4.1, since the shortest weighted path may not be the shortest
in terms of number of steps on the unweighted network. Instead we use Dijkstra’s
algorithm [72,60], which calculates all distances from a given starting vertex s
as follows.

1. Distances from vertex s are stored for each vertex and each distance is la-
beled either “exact,” meaning we have calculated that distance exactly, or
“estimated,” meaning we have made an estimate of the distance, but that
estimate may be wrong. Estimated distances in Dijkstra’s algorithm are al-
ways upper bounds on the exact distance. We start by assigning an estimated
distance of ∞ to all vertices except vertex s to which we assign an estimated
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distance of zero. (We know the latter to be exactly correct, but for the mo-
ment we consider it merely “estimated.”)

2. From the set of vertices whose distances from s are currently marked “esti-
mated,” choose the one with the lowest estimated distance, and mark this
“exact.”

3. Calculate the distance from that vertex to each of its immediate neighbors in
the network by adding to its distance the length of the edges leading to those
neighbors. Any of these distances that is shorter than a current estimated
distance for the same vertex supersedes that current value and becomes the
new estimated distance for the vertex.

4. Repeat from step (2), until no “estimated” distances remain.

A naive implementation of this algorithm takes time O(mn) to calculate dis-
tances from a single vertex to all others, or O(mn2) to calculate all pairwise
distances. One of the factors of n, however, arises because it takes time O(n) to
search through the vertices to find the one with the smallest estimated distance.
The speed of this operation can be improved by storing the estimated distances
in a binary heap (a partially ordered binary tree with its smallest entry at its
root). We can find the smallest distance in such a heap in time O(1), and add and
remove entries in time O(log n). This speeds up the operation of the algorithm
to O(mn log n), making the calculation feasible for the large networks studied
here.

It is in theory possible to generalize any of the calculations of Sect. 4 to
the weighted collaboration graph using this algorithm and variations on it. For
example, we can find shortest paths between specified pairs of scientists, as a
way of establishing referrals. We can calculate the weighted equivalent of be-
tweenness by a simple adaption of our algorithm of Sect. 4.2—we use Dijkstra’s
algorithm to establish the hierarchy of predecessors of vertices and then count
paths through vertices exactly as before. We can also study the weighted version
of the “funneling” effect using the same algorithm. Here we carry out just one
calculation explicitly to demonstrate the idea; we calculate the weighted ver-
sion of the distance centrality measure of Sect. 4.3, i.e., the average weighted
distance from a vertex to all others. In Table 3 we show the winners in this
particular popularity contest, along with their numbers of collaborators and pa-
pers in the database. Many of the scientists who score highly here do indeed
appear to be well connected individuals. For example, number 1 best connected
astrophysicist, Martin Rees, is the Astronomer Royal of Great Britain.14 What
is interesting to note however (apart from nonchalantly checking to see if one
has made it into the top 10) is that sheer number of collaborators is no longer
a necessary prerequisite for being well-connected in this sense (although some
of the scientists listed do have a large number of collaborators). The case of
D. Youm is particularly startling, since Youm has only two collaborators listed
in the database but nonetheless is fifth best connected high-energy theorist (out
14 On being informed of this latest honor, Prof. Rees is reported as replying, “I’m

certainly relieved not to be the most disconnected astrophysicist” (H. Muir, New
Scientist, November 25, 2000, p. 10).
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Table 3. The ten best connected individuals in three of the communities studied here,
calculated using the weighted distance measure described in the text.

rank name co-workers papers
astro-ph: 1 Rees, M. J. 31 36

2 Miralda-Escude, J. 36 34
3 Fabian, A. C. 156 112
4 Waxman, E. 15 30
5 Celotti, A. 119 45
6 Narayan, R. 65 58
7 Loeb, A. 33 64
8 Reynolds, C. S. 45 38
9 Hernquist, L. 62 80

10 Gould, A. 76 79
cond-mat: 1 Fisher, M. P. A. 21 35

2 Balents, L. 24 29
3 MacDonald, A. H. 64 70
4 Senthil, T. 9 13
5 Das Sarma, S. 51 75
6 Millis, A. J. 43 37
7 Ioffe, L. B. 16 27
8 Sachdev, S. 28 44
9 Lee, P. A. 24 34

10 Jungwirth, T. 27 17
hep-th: 1 Cvetic, M. 33 69

2 Behrndt, K. 22 41
3 Tseytlin, A. A. 22 65
4 Bergshoeff, E. 21 39
5 Youm, D. 2 30
6 Lu, H. 34 73
7 Klebanov, I. R. 29 47
8 Townsend, P. K. 31 54
9 Pope, C. N. 33 72

10 Larsen, F. 11 27

of eight thousand), because one or both of those collaborators are themselves
very well connected, and because their ties to Youm are very strong. Experimen-
talists no longer dominate the field, although the well-connected among them
still score highly.

Note that the number of papers for each of the well-connected scientists listed
is high. Having written a large number of papers is, as it rightly should be, always
a good way of becoming well connected. Whether you write many papers with
many different authors, or many with a few, writing many papers will put you
in touch with your peers.



366 M.E.J. Newman

6 Conclusions

In this article we have studied social networks of scientists in which the actors
are authors of scientific papers, and a tie between two authors represents coau-
thorship of one or more papers. Drawing on the lists of authors in four databases
of papers in physics, biomedical research, and computer science, we have con-
structed explicit networks for papers appearing between the beginning of 1995
and the end of 1999. We have cataloged a large number of basic statistics for our
networks, including typical numbers of papers per author, authors per paper,
and numbers of collaborators per author in the various fields. We also note that
the distributions of these quantities roughly follow a power-law form, although
there are some deviations which may be due to the finite time window used for
the study.

We have also looked at a variety of non-local properties of our networks. We
find that typical distances between pairs of authors through the networks are
small—the networks form a “small world” in the sense discussed by Milgram—
and that they scale logarithmically with total number of authors in a network,
in reasonable agreement with the predictions of random graph models. Using a
new algorithm for counting the number of shortest paths between vertices on
a graph that pass through each other vertex, we have calculated the so-called
betweenness measure of centrality on our graphs. We have also shown that for
most authors the bulk of the paths between them and other scientists in the
network go through just one or two or their collaborators, an effect that Strogatz
has dubbed “funneling.”

We have suggested a measure of the closeness of collaborative ties that takes
account of the number of papers a given pair of scientists have written together,
as well as the number of other coauthors with whom they wrote them. Using this
measure we have added weightings to our collaboration networks and used the
resulting networks to find those scientists who have the shortest average distance
to others. Generalization of the betweenness and funneling calculations to these
weighted networks is also straightforward.

The calculations presented in this article inevitably represent only a small
part of the investigations that could be conducted using large network datasets
such as these. We hope, given the high current level of interest in network phe-
nomena, that others will find many further uses for collaboration network data.
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Abstract. We review three studies of information flow in social networks that help
reveal their underlying social structure, how information spreads among them and why
small world experiments work.

1 Introduction

The problem of information flows in social organizations is relevant to issues
of productivity, innovation and the sorting out of useful ideas from the general
chatter of a community. How information spreads determines the speed by which
individuals can act and plan their future activities. Moreover, information flows
take place within social networks whose nature is sometimes difficult to establish.
This is because the network itself is sometimes different from what one would
infer from the formal structure of the group or organization.

The advent of email as the predominant means of communication in the
information society now offers a unique opportunity to observe the flow of in-
formation along both formal and informal channels. Not surprisingly, email has
been established as an indicator of collaboration and knowledge exchange [1–5].
Email is also a good medium for social network research because it provides
plentiful data on personal communication in an electronic form. This volume of
data enables the discovery of shared interests and relationships where none were
previously known [6].

In this chapter we will review three studies that utilized networks exposed by
email communication. In all three studies, the networks analyzed were derived
from email messages sent through the Hewlett Packard Labs email server over
the period of several months in 2002 and 2003. The first study, by Tyler et al.
[4], develops an automated method applying a betweenness centrality algorithm
to rapidly identify communities, both formal and informal, within the network.
This approach also enables the identification of leadership roles within the com-
munities. The automated analysis was complemented by a qualitative evaluation
of the results in the field.

The second study, by Wu et al. [7] analyzes email patterns to model infor-
mation flow in social groups, taking into account the observation that an item
relevant to one person is more likely to be of interest to individuals in the same
social circle than those outside of it. This is due to the fact that the similarity
of node attributes in social networks decreases as a function of the graph dis-
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tance. An epidemic model on a scale-free network with this property has a finite
threshold, implying that the spread of information is limited. These predictions
were tested by measuring the spread of messages in an organization and also by
numerical experiments that take into consideration the organizational distance
among individuals.

Since social structure affects the flow of information, knowledge of the com-
munities that exist within a network can also be used for navigating the networks
when searching for individuals or resources. The study by Adamic and Adar [8],
does just this, by simulating Milgram’s small world experiment on the HP Labs
email network. The small world experiment has been carried out a number of
times over the past several decades, each time demonstrating that individu-
als passing messages to their friends and acquaintances can form a short chain
between two people separated by geography, profession, and race. While the ex-
istence of these chains has been established, how people are able to navigate
without knowing the complete social networks has remained an open question.
Recently, models have been proposed to explain the phenomenon, and the work
of Adamic and Adar is a first study to test the validity of these models on a
social network.

2 Email as Spectroscopy

Communities of practice are the informal networks of collaboration that natu-
rally grow and coalesce within and outside organizations. Any institution that
provides opportunities for communication among its members is eventually
threaded by communities of people who have similar goals and a shared un-
derstanding of their activities [9]. These communities have been the subject of
much research as a way to uncover the reality of how people find information
and execute their tasks. (for example, see [10–12], or for a survey see [13]).

These informal networks coexist with the formal structure of the organization
and serve many purposes, such as resolving the conflicting goals of the institution
to which they belong, solving problems in more efficient ways [14], and furthering
the interests of their members. Despite their lack of official recognition, informal
networks can provide effective ways of learning, and with the proper incentives
actually enhance the productivity of the formal organization [15–17].

Recently, there has been an increased amount of work on identifying com-
munities from online interactions (a brief overview of this work can be found in
[1]). Some of this work finds that online relationships do indeed reflect actual so-
cial relationships, thus adding effectively to the “social capital” of a community.
Ducheneaut and Bellotti [18] conducted in-depth field studies of email behavior,
and found that membership in email communities is quite fluid and depends on
organizational context. Mailing lists and personal web pages also serve as prox-
ies for social relationships [19], and the communities identified from these online
proxies resemble the actual social communities of the represented individuals.
Because of the demonstrated value of communities of practice, a fast, accurate
method of identifying them is desirable.
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Classical practice is to gather data from interviews, surveys, or other field-
work and to construct links and communities by manual inspection (see [20,21]
or an Internet-centric approach in [22]). These methods are accurate but time-
consuming and labor-intensive, prohibitively so in the context of a very large
organization. Alani et al. [23] recently introduced a semi-automated utility that
uses a simple algorithm to identify nearest neighbors to one individual within a
university department.

The method of Tyler et al. [4] uses email data to construct a network of cor-
respondences, and then discovers the communities by partitioning this network.
It was applied to a set of over one million email messages collected over a period
of roughly two months at HP Labs in Palo Alto, an organization of approxi-
mately 400 people. The only pieces of information used from each email are the
names of the sender and receiver (i.e., the “to:” and “from:” fields), enabling the
processing of a large number of emails while minimizing privacy concerns.

The method was able to identify small communities within the organiza-
tion, and the leaders for those communities, in a matter of hours, running on
a standard Linux desktop PC. This experiment was followed by a qualitative
evaluation of the experimental results in the “field”, which consisted of sixteen
face-to-face interviews with individuals in HP Labs. The interviews validated the
results obtained by the automated process, and provided interesting perspectives
on the communities identified. We describe the results in more detail below.

2.1 Identifying Communities

It is straightforward to construct a graph based on email data, in which vertices
represent people and edges are added between people who exchanged at least a
threshold number of email messages. Next, one can identify communities: subsets
of related vertices, with many edges connecting vertices of the same subset, but
few edges lying between subsets [24].

The method of Wilkinson and Huberman [25], related to the algorithm of
Girvan and Newman [24], partitions a graph into discrete communities of nodes
and is based on the idea of betweenness centrality, or betweenness, first proposed
by Freeman [26]. The betweenness of an edge is defined as the number of all-
pair shortest paths that traverse it. This property distinguishes inter-community
edges, which link many vertices in different communities and have high between-
ness, from intra-community edges, whose betweenness is low.

To illustrate the community discovery process, consider the small graph
shown in Fig. 1. This graph consists of two well-defined communities: the four
vertices denoted by squares, including vertex A, and the nine denoted by circles,
including vertex B. Edge AB has the highest betweenness, because all paths
between any circle and square must pass through it. If one were to remove it,
the squares and circles would be split into two separate communities. The al-
gorithm of Wilkinson et al. repeatedly identifies inter-community edges of large
betweenness such as AB and removes them, until the graph is resolved into many
separate communities.
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Fig. 1. An example graph with edge AB having high betweenness.

 

Fig. 2. The smallest possible graph of two viable communities.

Because the removal of an edge strongly affects the betweenness of many oth-
ers, the values were repeatedly updated with the fast algorithm of Brandes [27,
28,24]. The procedure stops removing edges when it cannot further meaningfully
subdivide communities. Figure 2 shows the smallest possible component that can
be subdivided into two viable subcommunities. It has 6 nodes, consisting of two
triangles linked by one edge. A component with fewer than 6 nodes cannot be
subdivided further.

Components of size ≥ 6, for example the group of size nine in Fig. 1, can
also constitute single cohesive communities. Figure 3 shows how the algorithm
determines when to stop subdividing a community. The edge XY has the highest
betweenness, but removing it would separate a single node, which does not con-
stitute a viable community. In general, the single edge connecting a leaf vertex
(such as X in Fig. 3) to the rest of a graph of N vertices has a betweenness of
N − 1 , because it contains the shortest path from X to all N − 1 other vertices.
The stopping criterion for components of size ≥ 6 is therefore that the highest
betweenness of any edge in the component be equal to or less than N − 1.

 

X 

Y

Fig. 3. An example graph of one community that does not contain distinct sub-
communities.
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2.2 Multiple Community Structures

As mentioned above, the removal of any one edge affects the betweenness of all
the other edges, particularly in large, real-world graphs such as the email graph.
Early in the process, there are many inter-community edges which have high
betweenness and the choice of which to remove, while arbitrary, dictates which
edges will be removed later. For example, a node belonging to two communities
can be placed in one or the other by the algorithm, depending on the order in
which edges are removed. One can take advantage of this arbitrariness to repeat-
edly partition the graph into many different “structures” or sets of communities.
These sets are then compared and aggregated into a final list of communities.

Wilkinson and Huberman [25] introduced randomness into the algorithm
by calculating the shortest paths from a random subset as opposed to all the
nodes. The algorithm cycles randomly through at least m centers (where m is
some cutoff) until the betweenness of at least one edge exceeds the threshold
betweenness of a “leaf” vertex. The edge whose betweenness is highest at that
point is removed, and the procedure is repeated until the graph has been sep-
arated into communities. The modified algorithm may occasionally remove an
intra-community edge, but such errors are unimportant when a large number of
structures is aggregated.

Applying this modified process n times yields n community structures im-
posed on the graph. One can then compare the different structures and identify
communities. For example, after imposing 50 structures on a graph, one might
find: a community of people A, B, C, and D in 25 of the 50 structures; a com-
munity of people A, B, C, D, and E in another 20; and one of people A, B, C,
D, E and F in the remaining 5. This result is reported in the following way:
A(50) B(50) C(50) D(50) E(25) F(5) which signifies that A, B, C, and D form
a well-defined community, E is related to this community, but also to some
other(s), and F is only slightly, possibly erroneously, related to it. For details of
the aggregation procedure, please see [25].

The entire process of determining community structure within the graph is
displayed below.

– For i iterations, repeat {
1. Identify disjoint components of the graph.
2. For each component, check to see if component is a community.

– If so, remove it from the graph and output it.
– If not, remove edges of highest betweenness, using the modified Bran-

des algorithm for large components, and the normal algorithm for
small ones. Continue removing edges until the community splits in
two.

3. Repeat step 2 until all vertices have been removed from the graph in
communities. }

– Aggregate the i structures into a final list of communities.
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2.3 Results

The algorithm was applied to email data from the HP Labs mail server from
the period November 25, 2002 to February 18, 2003, with 185,773 emails ex-
changed between the 485 HP Labs employees. For simplicity, emails that had
an external origin or destination were omitted. Messages sent to a list of more
than 10 recipients were likewise removed, as these emails were often lab-wide
announcements (rather than personal communication), which were not useful in
identifying communities of practice.

A graph was constructed from this data by placing edges between any two
individuals that had exchanged at least 30 emails in total, and at least 5 in both
directions. The threshold eliminated infrequent or one-way communication, and
eliminated some individuals from the graph who either sent very few emails or
used other email systems. The resulting graph consisted of 367 nodes, connected
by 1110 edges.

There was one giant connected component of 343 nodes and six smaller com-
ponents ranging in size from 2 to 8. The modified Brandes algorithm detected 60
additional distinct communities within the giant component. The largest com-
munity consisted of 57 individuals. The mean community size was 8.4, with
standard deviation 5.3. A comparison of these communities with information
from the HP corporate directory revealed that 49 of the 66 communities con-
sisted of individuals entirely within one lab or organizational unit. The remaining
17 contained individuals from two or more organizations within the company.

2.4 Identifying Leadership Roles

In addition to identifying formal and informal work communities, it is also pos-
sible to draw inferences about the leadership of an organization from its commu-
nication data. One method is to visualize the above graph of the HP Labs email
network with a standard force-directed spring algorithm [29], shown in Fig. 4.
This spring layout of the email network does not use any information about the
actual organization structure, and yet high level managers (the reddest nodes
are at the top of the hierarchy) are placed close to the center of the graph. The
trend is quantified in Table 1, which lists the average hierarchy depth (levels
from the lab director) as a function of the position in the layout from the center.

Note that there is a group of 6 nodes in the upper right portion of the graph
that are quite removed from the center, but are relatively high in the organiza-
tional hierarchy. This is the university relations group that reports directly to
the head of HP Labs, but has no other groups reporting to it. Hence the layout
algorithm correctly places them on the periphery of the graph, since their func-
tion, that of managing HP’s relationship with universities, while important, is
not at the core of day-to-day activities of the labs.

Evaluating communication networks with this technique could provide infor-
mation about leadership in communities about which little is known. Sparrow
proposed this approach for analyzing criminal networks [30], noting that “Eu-
clidean centrality is probably the closest to the reality” of the current criminal
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Fig. 4. The giant connected component of the HP Labs email network. The redness
and size of a vertex indicates an individual’s closeness to the top of the lab hierarchy
(red-close to top, blue-far from top, black-no data available).

Table 1. Average hierarchy depth by distance from center in layout

distance from center number of vertices average depth in hierarchy
< 0.1 14 2.6

0.1 to 0.2 32 3.0
0.2 to 0.3 56 3.2
0.3 to 0.4 66 4.0
0.4 to 0.5 56 4.0
0.5 to 0.6 45 4.2
0.6 to 0.7 42 4.0
0.7 to 0.8 12 3.9
0.8 to 0.9 13 3.8

network analysis techniques. More recently, Krebs applied centrality measures
and graphing techniques [31] to the terrorist networks uncovered in the 9/11
aftermath. He found that the average shortest path was unusually long for such
a small network, and concluded that the operation had traded efficiency for se-
crecy - individuals in one part of the network did not know those in other parts
of the network. If one cell had been compromised, the rest of the network would
remain relatively unaffected. Several social network centrality measures pointed
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to Mohamed Atta’s leadership role in the attacks of Sept. 11. The role was also
confirmed by Osama bin Laden in a video tape following the attacks.

2.5 Field Evaluation

The HP Labs social network, being much less covert, could readily be compared
to the structure of the formal organization. Nevertheless, the informal commu-
nities identified by the algorithm could not be verified in this way. Tyler et al.
decided to validate the results of their algorithm by conducting a brief, infor-
mal field study. Sixteen individuals chosen from seven of the sixty communities
identified were interviewed informally. The communities chosen represented var-
ious community sizes and levels of departmental homogeneity. They ranged in
size from four to twelve people, and three out of the seven were heterogeneous
(included members of at least two different departmental units within the com-
pany).

All sixteen subjects gave positive affirmation that the community reflected
reality. More specifically, eleven described the group as reflecting their depart-
ment, four described it as a specific project group, and one said it was a dis-
cussion group on a particular topic. Nine of the sixteen (56.25%) said nobody
was missing from the group, six people (37.5%) said one person was missing,
and one person (6.25%) said two people were missing. Conversely, ten of the
sixteen (62.5%) said that everybody in the group deserved to be there, whereas
the remaining six (37.5%) said that one person in the group was misclassified.

The interviews confirmed that most of the communities identified were based
on organization structure. However, the communities also tended to include peo-
ple who were de facto department members, but who did not technically appear
in the department’s organization chart, such as interns or people whose directory
information had changed during the two months of the study. Finally, the algo-
rithm seemed to succeed in dividing departmental groups whose work is distinct,
but lumped together groups whose projects overlap.

Heterogeneous, cross-department communities are of particular interest be-
cause they cannot be deduced from the formal organization. The interviews
revealed that most of them represented groups formed around specific projects,
and in one case, a discussion forum. For example, one community contained
three people from different labs coordinating on one project: a technology trans-
fer project manager, a researcher who was the original designer of a piece of PC
hardware, and an engineer redesigning the hardware for a specific printer.

2.6 Discussion

The power of this method for identifying communities and leadership is in its
automation. It does an effective job of uncovering communities of practice with
nothing more than email log (“to:” and “from:”) data. The betweenness cen-
trality measures can be further augmented to incorporate weights on the edges,
representing, for example, the frequency of communication along a link [32].



Information Dynamics in the Networked World 379

Because the method of Wilkinson et al. [25] needs to re-run the Brandes al-
gorithm every time an edge is removed, the algorithm has a running time of
O(n3). Even faster algorithms, that can identify communities in O(n2) [33] and
O(n) [34] time have since been developed. The simplicity and speed of these
new algorithms means that they can be applied to organizations of thousands
to hundreds of thousands and produce results efficiently.

Communities identified in this automated way lack the richness in contex-
tual description provided by ethnographic approaches. They do not reveal the
nature or character of the identified communities, the relative importance of one
community to another, or the subtle inter-personal dynamics within the com-
munities. These kinds of details can only be uncovered with much more data-
or labor-intensive techniques. However, in cases where an organization is very
large, widely dispersed, or incompletely defined (informal), this method provides
an suitable alternative or compliment to the more traditional, labor-intensive ap-
proaches.

3 Information Flow in Social Groups

In the previous section we saw that individuals tend to organize both formally
and informally into groups based on their common activities and interests. In
this section we examine how this structure in the interaction network affects the
way information spreads. This is not unlike the transmission of an infectious
agent among individuals, where the pattern of contacts determines how far a
disease spreads. Thus one would expect that epidemic models on graphs are
relevant to the study of information flow in organizations.

As we will show shortly (see, for example Fig. 8), e-mail networks can form
scale free graphs. This is of particular interest, since recent work on epidemic
propagation on scale free networks found that the threshold for an epidemic
is zero, implying that a finite fraction of the graph becomes infected for arbi-
trarily low transmission probabilities [35–37]. The presence of additional network
structure was found to further influence the spread of disease on scale-free graphs
[38–40].

There are, however, differences between information flows and the spread
of viruses. While viruses tend to be indiscriminate, infecting any susceptible
individual, information is selective and passed by its host only to individuals
the host thinks would be interested in it. The information any individual is
interested in depends strongly on their characteristics. Furthermore, individuals
with similar characteristics tend to associate with one another, a phenomenon
known as homophily [41–43]. Conversely, individuals many steps removed in a
social network on average tend not to have as much in common, as shown in a
study [19] of a network of Stanford student homepages and illustrated in Fig. 5.

Wu et al. [7] introduced an epidemic model with decay in the transmission
probability of a particular piece of information as a function of the distance
between the originating source and the current potential target. This epidemic
model on a scale-free network has a finite threshold, implying that the spread
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Fig. 5. Average similarity of Stanford student homepages as a function of the number
of hyperlinks separating them.

of information is limited. The predictions were further tested by observing the
prevalence of messages in an organization and also by numerical experiments
that take into consideration the organizational distance among individuals.

Consider the problem of information transmission in a power-law network of
interacting individuals, where the degree distribution is given by

pk = Ck−αe−k/κ, (1)

where α > 1, there is an exponential cutoff at κ and C is determined by the
normalization condition. A real world graph will at the very least have a cutoff
at the maximum degree k = N , where N is the number of nodes, and many
networks show a cutoff at values much smaller than N . For their analysis, Wu
et al. [7] made use of generating functions, whose application to graphs with
arbitrary degree distributions is discussed in [44]. The generating function of the
distribution is

G0(x) =
∞∑

k=1

pkx
k =

Liα(xe−k/κ)
Liα(e−1/κ)

. (2)

where Lin(x) is the nth polylogarithm of x.
Following the analysis in [45] for the SIR (susceptible, infected, removed)

model, one can estimate the probability p(1)l that the first person in the com-
munity who has received a piece of information will transmit it to l of their
neighbors. Using the binomial distribution, we find

p
(1)
l =

∞∑

k=l

pk

(
k

l

)
T l(1− T )k−l, (3)

where the superscript “(1)” refers to first neighbors, those who received the
information directly from the initial source. The transmissiblity T is the average
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total probability that the information will be transmitted across an edge in the
network from a infective individual to a susceptible neighbor. T is derived in
[45] as a function of rij , the rate of contacts between the two nodes, and τi, the
time a node remains infective. If we assume to a first approximation that rij and
τi are iid randomly distributed according to the distributions P (r) and P (τ),
then the item will propagate as if all transmission probabilities are equal to a
constant T .

T = 〈Tij〉 = 1−
∫ ∞

0
drdτP (r)P (τ)e−rτ (4)

The generating function for p(1)m is given by

G(1)(x) =
∞∑

l=0

∞∑

k=l

pk

(
k

l

)
T l(1− T )k−lxl (5)

= G0(1 + (x− 1)T ) = G0(x;T ). (6)

Suppose the transmissibility decays as a power of the distance from the initial
source. We choose this weakest form of decay as the results that are obtained
from it will also be valid for stronger functional forms. Then the probability that
an mth neighbor will transmit the information to a person with whom he has
contact is given by

T (m) = (m+ 1)−βT, (7)

where β > 0 is the decay constant. T (m) = T at the originating node (m = 0)
and decays to zero as m→∞.

The generating function for the transmission probability to 2nd neighbors
can be written as

G(2)(x) =
∑

k

p
(1)
k [G(1)

1 (x)]k = G(1)(G(1)
1 (x)), (8)

where

G
(1)
1 (x) = G1(x; 2−βT ) = G1(1 + (x− 1)2−βT ) (9)

and

G1(x) =
∑
k kpkx

k

x
∑
k kpk

=
G′

0(x)
G′

0(1)
(10)

is the generating function of the degree distribution of a vertex reached by fol-
lowing a randomly chosen edge, not counting the edge itself [44]. Similarly, if we
define G(m)(x) to be the generating function for the number of mth neighbors
affected, then we have

G(m+1)(x) = G(m)(G(m)
1 (x)) for m ≥ 1, (11)
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where

G
(m)
1 (x) = G1(x; (m+ 1)−βT ) = G1(1 + (x− 1)(m+ 1)−βT ). (12)

Or, more explicitly,

G(m+1)(x) = G(1)(G(1)
1 (G(2)

1 (· · ·G(m)
1 (x)))). (13)

The average number zm+1 of (m+ 1)th neighbors is

zm+1 = G(m+1)′
(1) = G

(m)
1

′
(1)G(m)′

(1) = G
(m)
1

′
(1)zm. (14)

So the condition that the size of the outbreak (the number of affected individuals)
remains finite is given by

zm+1

zm
= G

(m)
1

′
(1) < 1, (15)

or

(m+ 1)−βTG′
1(1) < 1. (16)

Note that G′
1(1) does not diverge when α < 3 due to the presence of a cutoff

at κ. For any given T , the left hand side of the inequality above goes to zero
when m→∞, so the condition is eventually satisfied for large m. Therefore the
average total size

〈s〉 =
∞∑

m=1

zm (17)

is always finite if the transmissibility decays with distance.
To compare this result with previous results on disease spread on scale-free

networks, we take as an example a network made up of 106 vertices. We can
define an epidemic to be an outbreak affecting more than 1% or 104 vertices.
Thus for fixed α, κ and β, we can define Tc as the transmissibility above which
〈s〉 would be made to exceed 104.

Figure 6 shows the numerical results of the variation of Tc as a function of
α. When β = 0 (there is no decay in transmission probability), κ = ∞, and
α < 3, Tc is zero and epidemics encompassing more than 104 vertices occur
for arbitrarily small T , as was found in [36]. Keeping β at zero and adding a
cutoff at κ = 100 produces a non-zero critical transmissibility Tc, as was found
in [45]. For α = 2, a typical value for real-world networks, Tc is still very near
zero, meaning that for most values of T , epidemics do occur. However, when we
impose a decay in transmissibility by setting β to 1, Tc rises substantially. For
example, Tc jumps to 0.54 at α = 2 and rises rapidly to 1 as α increases further,
implying that the information may not spread over the network.

In order to validate empirically that the spread of information within a net-
work of people is limited, and hence distinct from the spread of a virus, a sample
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from the mail clients of 40 individuals (30 within HP Labs, and 10 from other
areas of HP, other research labs, and universities) was gathered. Each volunteer
executed a program that identified URLs and attachments in the messages in
their mailboxes, as well as the time the messages were received. This data was
cryptographically hashed to protect the privacy of the users. By analyzing the
message content and headers, the data was restricted to include only messages
which had been forwarded at least one time, thereby eliminating most postings
to mailing lists and more closely approximating true inter-personal information
spreading behavior. The median number of messages in a mailbox in the sample
was 2200, indicating that many users keep a substantial portion of their email
correspondence. Although some messages may have been lost when users deleted
them, it was assumed that a majority of messages containing useful information
had been retained.

Figure 7 shows a histogram of how many users had received each of the 3401
attachments and 6370 URLs. The distribution shows that only a small fraction
(5% of attachments and 10% of URLs) reached more than 1 recipient. Very few
(41 URLs and 6 attachments) reached more than 5 individuals, a number which,
in a sample of 40, starts to resemble an outbreak. In follow-up discussions with
the study subjects, the content and significance of most of these messages was
identified. 14 of the URLs were advertisements attached to the bottom of an
email by free email services such as Yahoo and MSN. These are in a sense viral,
because the sender is sending them involuntarily. It is this viral strategy that was
responsible for the rapid buildup of the Hotmail free email service user base. 10
URLs pointed to internal HP project or personal pages, 3 URLs were for external
commercial or personal sites, and the remaining 14 could not be identified.
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Fig. 7. Number of people receiving URLs and attachments

The next portion of the analysis analyzed the effect of decay in the trans-
mission probability on the email graph at HP Labs. The graph was constructed
from recorded logs of all incoming and outgoing messages over a period of 3
months. The graph has a nearly power-law out degree distribution, shown in
Fig. 8, including both internal and external nodes. Because all of the outgoing
and incoming contacts were recorded for internal nodes, their in and out degrees
were higher than for the external nodes for which we could only record the email
they sent to and received from HP Labs. A graph with the internal and external
nodes mixed (as in [46]) was used to specifically demonstrate the effect of a decay
on the spread of email in a power-law graph.

The spread of a piece of information was simulated by selecting a random
initial sender to infect and following the email log containing 120,000 entries
involving over 7,000 recipients in the course of a week. Every time an infec-
tive individual (one willing to transmit a particular piece of information) was
recorded as sending an email to someone else, they had a constant probability p
of infecting the recipient. Hence individuals who email more often have a higher
probability of infecting. It is also assumed that an individual remains infective
for a period of 24 hours.

Next a decay was introduced in the one-time transmission probability pij
as p d−1.75

ij , where dij is the distance in the organizational hierarchy between
individuals i and j. The exponent roughly corresponds to the decay in similarity
between homepages shown in Fig. 5. Here rij = pij fij , where fij is the frequency
of communication between the two individuals, obtained from the email logs. The
decay represents the fact that individuals closer together in the organizational
hierarchy share more common interests. Individuals have a distance of one to
their immediate superiors and subordinates and to those they share a superior
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with. The distance between someone within HP labs and someone outside of HP
labs was set to the maximum hierarchical distance of 8.

Figure 9 shows the variation in the average outbreak size, and the average
epidemic size (chosen to be any outbreak affecting more than 30 individuals).
Without decay, the epidemic threshold falls below p = 0.01. With decay, the
threshold is set back to p = 0.20 and the outbreak epidemic size is limited to
about 50 individuals, even for p = 1.



386 B.A. Huberman and L.A. Adamic

As these results show, the decay of similarity among members of a social
group has strong implications for the propagation of information among them.
In particular, the number of individuals that a given email message reaches
is very small, in contrast to what one would expect on the basis of a virus
epidemic model on a scale free graph. The implication of this finding is that
merely discovering hubs in a community network is not enough to ensure that
information originating at a particular node will reach a large fraction of the
community.

4 Small World Search

In the preceding section we discussed how the tendency of like individuals to
associate with one another can affect the flow of information within an organi-
zation. In this section we will show how one can take advantage of the very same
network structure to navigate social ties and locate individuals.

The observation that any two people in the world are most likely linked by a
short chain of acquaintances, known as the “small world” phenomenon has been
the focus of much research over the last forty years [47–50]. In the 1960’s and 70’s,
participants in small world experiments successfully found paths from Nebraska
to Boston and from Los Angeles to New York. In an experiment in 2001 and
2002, 60,000 individuals were able to repeat the experiment using email to form
chains with just four links on average across different contents [51]. The small
world phenomenon is currently exploited by commercial networking services such
as LinkedIn, Friendster, and Spoke1 to help people network, for both business
and social purposes.

The existence of short paths is not particularly surprising in and of itself.
Although many social ties are “local” meaning that they are formed through
one’s work or place of residence, Watts and Strogatz [52] showed that it takes
only a few “random” links between people of different professions or location to
create short paths in a social network and make the world “small”. In addition,
Pool and Kochen [53] have estimated that an average person has between 500 and
1,500 acquaintances. Ignoring for the moment overlap in one’s circle of friends,
one would have 1, 0002 or 1, 000, 000 friends of friends, and 1, 0003 or one billion
friends-of-friends-of-friends. This means that it would take only 2 intermediaries
to reach a number of people on the order of the population of the entire United
States.

Although the existence of short paths is not surprising, it is another question
altogether how people are able to select among hundreds of acquaintances the
correct person to form the next link in the chain. Killworth and Barnard [50]
performed the “reverse” experiment to measure how many acquaintances a typ-
ical person would use as a first step in a small world experiment. Presented with
1 http://www.linkedin.com/,
http://www.friendster.com/,
http://www.spokesoftware.com/
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1,267 random targets, the subjects chose about 210 different acquaintances on
average, based overwhelmingly on geographic proximity and similarity of pro-
fession to the targets.

Recently, mathematical models have been proposed to explain why people
are able to find short paths. The model of Watts, Dodds, and Newman [54]
assumes that individuals belong to groups that are embedded hierarchically into
larger groups. For example an individual might belong to a research lab, that
is part of an academic department at a university, that is in a school consisting
of several departments, that is part of a university, that is one of the academic
institutions in the same country, etc. The probability that two individuals have
a social tie to one another is proportional to exp−αh, where h is the height of
their lowest common branching point in the hierarchy.

The decay in linking probability means that two people in the same research
laboratory are more likely to know one another than two people who are in
different departments at a university. The model assumes a number of separate
hierarchies corresponding to characteristics such as geographic location or pro-
fession. In reality, the hierarchies may be intertwined, for example professors
at a university living within a short distance of the university campus, but for
simplicity, the model treats them separately.

In numerical experiments, artificial social networks were constructed and a
simple greedy algorithm was performed where the next step in the chain was
selected to be the neighbor of the current node with the smallest distance along
any dimension. At each step in the chain there is a fixed probability, called the
attrition rate, that the node will not pass the message further. The numerical
results showed that for a range of the parameter α and number of attribute
dimensions, the networks are “searchable”, meaning that a minimum fraction of
search paths find their target.

Kleinberg [55,56] posed a related question: in the absence of attrition, when
does the length of the chains scale in the same way as the average shortest path.
Unlike the study of Watts. et al., there is no attrition - all chains run until com-
pletion, but need to scale as the actual shortest path in the network does. In the
case of a small world network, the average shortest path scales as ln(N), where
N is the number of nodes. Kleinberg proved that a simple greedy strategy based
on geography could achieve chain lengths bounded by (lnN)2 under the follow-
ing conditions: nodes are situated on an m-dimensional lattice with connections
to their 2m closest neighbors and additional connections are placed between any
two nodes with probability p ∼ r−m, where r is the distance between them.
Since in the real world our locations are specified primarily by two dimensions,
longitude and latitude, the probability is inversely proportional to the square
of the distance. A person should be four times as likely to know someone liv-
ing a block away, than someone two city blocks away. However, Kleinberg also
proved that if the probabilities of acquaintance do not follow this relationship,
nodes would not be able to use a simple greedy strategy to find the target in
polylogarithmic time.
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The models of both Watts et al. and Kleinberg show that the probability
of acquaintance needs to be related to the proximity between individuals’ at-
tributes in order for simple search strategies using only local information to be
effective. Below we describe experiments empirically testing the assumptions and
predictions of the proposed two models.

4.1 Method

In order to test the above hypothesis, Adamic and Adar [8] applied search al-
gorithms to email networks derived from the email logs at HP Labs already
described in Sect. 2. A social contact was defined to be someone with whom an
individual had exchanged at least 6 emails each way over the period of approx-
imately 3 months. The bidirectionality of the email correspondence guaranteed
that a conversation had gone on between the two individuals and hence that
they are familiar with one another.

Imposing this constraint yielded a network of 436 individuals with a median
number of 10 acquaintances and a mean of 13. The degree distribution, shown in
Fig. 10, is highly skewed with an exponential tail. This is in contrast to the raw
power-law email degree distribution, used in Sect. 3 and shown in Fig. 8, per-
taining to both internal and external nodes and possessing no threshold in email
volume. A scale free distribution in the raw network arises because there are
many external nodes emailing just one individual inside the organization, and
there are also some individuals inside the organization sending out announce-
ments to many people and hence having a very high degree. However, once we
impose a higher cost for maintaining a social contact (that is, emailing that con-
tact at least six times and receiving at least as many replies), then there are few
individuals with many contacts.
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Fig. 10. Degree distribution in the HP Labs email network. Two individuals are linked
if they exchanged at least 6 emails in either direction. The inset shows the same dis-
tribution, but on a semilog scale, to illustrate the exponential tail of the distribution
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4.2 Simulating Milgram’s Experiment on an Email Network

The resulting network, consisting of regular email patterns between HP Labs em-
ployees, had 3.1 edges separating any two individuals on average, and a median
of 3. Simulations were performed on the network to determine whether members
of the network would be able to use a simple greedy algorithm to locate a target.
In this simple algorithm, each individual can use knowledge only of their own
email contacts, but not their contacts’ contacts, to forward the message.

Three different strategies were tested, at each step passing the message to
the contact who is either

– best connected
– closest to the target in the organizational hierarchy
– sitting in closest physical proximity to the target

The first strategy selects the individual who is more likely to know the target
by virtue of the fact that he/she knows so many people. It has been shown [57],
that this is an effective strategy in power-law networks with exponents close to 2
(the case of the unfiltered HP Labs email network), but that it performs poorly
in graphs with a Poisson degree distribution that has an exponential tail. Since
the distribution of contacts in the filtered HP network was not power-law, the
high degree strategy was not expected to perform well, and this was verified
through simulation. The median number of steps required to find a randomly
chosen target from a random starting point was 17, compared to the three steps
in the average shortest path. Even worse, the average number of steps is 40. This
discrepancy between the mean and the median is a reflection of the skewness of
the distribution: a few well connected individuals and their contacts are easy to
find, but some individuals who do not have many links and are not connected
to highly connected individuals are difficult to locate using this strategy.

The second strategy consisted of passing the message to the contact closest to
the target in the organizational hierarchy. The strategy relies on the observation,
illustrated in Figs. 11 and 13 that individuals closer together in the organiza-
tional hierarchy are more likely to email with one another. Figure 12 illustrates
such a search, labelling nodes by their hierarchical distance (h-distance) from
the target. The h-distance is computed as follows: a node has distance one to
their manager and to everyone they share a manager with. Distances are then
recursively assigned, so that each node has h-distance 2 to their first neighbor’s
neighbors, and h-distance 3 to their second neighbor’s neighbors, etc. A simple
greedy strategy using information about the organizational hierarchy worked
extremely well. The median number of steps was only 4, close to the median
shortest path of 3. With the exception of one individual, whose manager was
not located on site, and who was consequently difficult to locate, the mean num-
ber of steps was 4.7, meaning that not only are people typically easy to find, but
nearly everybody can be found in a reasonable number of steps.

In the original experiment by Milgram the completed chains were divided
between those that reached the target through his professional contacts and
those that reached him through his hometown. On average those that relied on
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Pajek

Fig. 11. Email communications within HP Labs (gray lines) mapped onto the orga-
nizational hierarchy (black lines). Note that email communication tends to “cling” to
the formal organizational chart.
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Fig. 12. Example illustrating a search path using information about the target’s po-
sition in the organizational hierarchy to direct a message. Numbers in the square give
the h-distance from the target.



Information Dynamics in the Networked World 391

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6
pr

ob
ab

ili
ty

 o
f l

in
ki

ng
 p

L(h
)

hierarchical distance h

observed
fit exp(−0.92*h)

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

h

p L(h
)

Fig. 13. Probability of linking as a function of the separation in the organizational
hierarchy. The exponential parameter α = 0.92, in the searchable range according to
the model of Watts et al.[54]

geography took 1.5 steps longer to reach the target, a difference found to be
statistically significant. In the words of Travers and Milgram [48], the following
seemed to occur: “Chains which converge on the target principally by using
geographic information reach his hometown or the surrounding areas readily,
but once there often circulate before entering the target’s circle of acquaintances.
There is no available information to narrow the field of potential contacts which
an individual might have within the town.”

Performing the small world experiment on the HP email network using ge-
ography produced a similar result, in that geography could be used to find
most individuals, but was slower, taking a median number of 7 steps, and a
mean of 12. Figure 14 shows the email correspondence mapped onto the phys-
ical layout of the buildings. Individuals’ locations are given by their building,
the floor of the building, and the nearest building post (for example “H15”)
to their cubicle. The distance between two cubicles was approximated by the
“street” distance between their posts (for example “A3” and “C10” would be
(C − A) × 25′ + (10 − 3) × 25′ = 2 × 25′ + 7 × 25′ = 225 feet apart). Adding
the x and y directions separately reflects the interior topology of the buildings
where one navigates perpendicular hallways and cannot traverse diagonally. If
individuals are located on different floors or in different buildings, the distance
between buildings and the length of the stairway are factored in.

The general tendency of individuals in close physical proximity to correspond
holds: over 87% percent of the 4000 email links are between individuals on the
same floor, and overall individuals closer together are more likely to correspond.
Still, individuals maintain disproportionately many far-flung contacts while not
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Fig. 14. Email communications within HP Labs mapped onto approximate physical
location based on the nearest post number and building given for each employee. Each
box represents a different floor in a building. The lines are color coded based on the
physical distance between the correspondents: red for nearby individuals, blue for far
away contacts.

getting to know some of their close-by neighbors. The relationship between prob-
ability of acquaintance and cubicle distance r between two individuals, shown
in Fig. 15, is well-fitted by a 1/r curve. However, Kleinberg has shown that the
optimum relationship in two dimensional space is 1/r2 - a stronger decay in
probability of acquaintance than the 1/r observed.

In the case of HP Labs, the geometry may not be quite two dimensional,
because it is complicated by the particular layout of the buildings. Hence the
optimum relationship may lie between 1/r and 1/r2. In any case, the observed
1/r probability of linking shows a tendency consistent with Milgram’s observa-
tions about the original small world experiment. At HP Labs, because of space
constraints, re-organizations, and personal preferences, employees’ cubicles may
be removed from some of the co-workers they interact with. This hinders a search
strategy relying solely on geography, because one might get physically quite close
to the target, but still need a number of steps to find an individual who interacts
with them.

Figure 16 shows a histogram of chain lengths resulting from searches using
each of the three strategies. It shows the clear advantage of using the target’s
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Fig. 16. Results of search experiments utilizing either knowledge of the target’s posi-
tion in the organizational hierarchy or the physical location of their cubicle.

position in organizational hierarchy as opposed to his/her cubicle location to
pass a message through one’s email contact. It also shows that both searches
using information about the target outperform a search relying solely on the
connectivity of one’s contacts.
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4.3 Discussion

The above simulated experiments verify the models proposed in [54] and [55]
to explain why individuals are able to successfully complete chains in the small
world experiments using only local information. When individuals belong to
groups based on a hierarchy and are more likely to interact with individuals
within the same small group, then one can safely adopt a greedy strategy - pass
the message onto the individual most like the target, and they will be more likely
to know the target or someone closer to them.

At the same time it is important to note that the optimum relationship
between the probability of acquaintance and distance in physical or hierarchi-
cal space between two individuals, as outlined in [55,56], are not exactly satis-
fied. We just saw that the relationship between the physical distance and the
probability of corresponding by email follows an inverse rather than an inverse
square relationship. There are too many distant contacts and too few nearby
ones compared to the optimum. A similar, albeit weaker trend holds for organi-
zational distance. In Section 2 email spectroscopy revealed that while collabora-
tions mostly occurred within the same organizational unit, they also frequently
bridged different parts of the organization or broke up a single organizational
unit into noninteracting subgroups. The optimum relationship derived in [56]
for the probability of linking would be inversely proportional to the size of the
smallest organizational group that both individuals belong to. However, the ob-
served relationship, shown in Fig. 17 is slightly off, with p ∼ g−3/4, g being the
group size.
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Fig. 17. Probability of two individuals corresponding by email as a function of the
size of the smallest organizational unit they both belong to. The optimum relationship
derived in [56] is p ∼ g−1, g being the group size. The observed relationship is p ∼ g−3/4.
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Overall, the results of the email study are consistent with the model of Watts
et al. [54]. This model does not require the search to find near optimum paths,
but simply determines when a network is “searchable”, meaning that fraction
of messages reach the target given a rate of attrition. The relationship found
between separation in the hierarchy and probability of correspondence, shown
in Fig. 13, is well within the searchable regime identified in the model.

The study of Adamic and Adar is a first step, validating these models on a
small scale. The email study gives a concrete way of observing how the small
world chains can be constructed. Using a very simple greedy strategy, individuals
across an organization could reach each other through a short chain of coworkers.
It is quite likely that similar relationships between acquaintance and proximity
(geographical or professional) hold true in general, and therefore that small world
experiments succeed on a grander scale for the very same reasons.

5 Conclusion

In this chapter we reviewed three studies of information flow in social networks.
The first developed a method of analyzing email communication automatically
to expose communities of practice and their leaders. The second showed that
the tendency of individuals to associate according to common interests influ-
ences the way that information spreads throughout a social group. It spreads
quickly among individuals to whom it is relevant, but unlike a virus, is unable
to infect a population indiscriminately. The third study showed why small world
experiments work - how individuals are able to take advantage of the structure
of social networks to find short chains of acquaintances. All three studies relied
on email communication to expose the underlying social structure, which pre-
viously may have been difficult and labor-intensive to obtain. We expect that
these findings are also valid with other means of social communication, such as
verbal exchanges, telephony and instant messenger systems.
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Abstract. We present here a brief summary of the various possible applications of
network theory in the field of finance. Since we want to characterize different systems by
means of simple and universal features, graph theory could represent a rather powerful
methodology. In the following we report our activity in three different subfields, namely
the board and director networks, the networks formed by prices correlations and the
stock ownership networks. In most of the cases these three kind of networks display
scale-free properties making them interesting in their own. Nevertheless, we want to
stress here that the main utility of this methodology is to provide new measures of the
real data sets in order to validate the different models.

1 Introduction

The study of topological properties of networks has recently received great at-
tention [1]. In particular it has been shown that many natural systems display
an unexpected amount of correlation [2] with respect to traditional models [3].
Graphs are mathematical objects formed by vertices connected by edges. An
important characterization of a graph is given by the degree of vertices, that is
the number of edges per vertex. In an Erdős-Rényi random graph the degree
distribution has a poissonian form, whereas in many cases of interest ranging
from the WWW [4,5] to the Internet [6,7] to social networks [8] the degree is
power law distributed. The scale-free behavior can be reproduced by two classes
of models. The growth models where new sites enter and choose a site to be
linked with through the ”rich gets richer” rule of preferential attachment [9].
Interestingly, there are also other ways to reproduce such scale invariance by
means of static models where ”good gets richer” [10]). Growth plays a major
role in technological networks like Internet and WWW, while in financial net-
works the size of the system is basically unchanged, even if the system is subject
to a process of evolution in which some old nodes are replaced by new ones and
some links are rewired.

Like the distribution of the connectivity degree of vertices, assortativity and
clustering are among the most interesting quantities to consider for classifying
and describing these complex networks. The average degree knn(k) of the neigh-
boring site of a site of degree k has been introduced in [7] in order to measure
assortativity. knn increases if nodes are correlated by degree (assortative net-
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works). It decreases if they are anti-correlated (disassortative networks). The
tendency for nodes in a social network to form connections preferentially to oth-
ers similar to them [11] has been proposed as the key ingredient for the formation
of communities in networks [12,13]. It is possible to distinguish the technological
networks, where instead, the behavior is rather degree-disassortative, so that
vertices tend to be linked to others different from them. Despite the relative
simplicity of such behavior, few models [14–16] of network growth are able to
reproduce the formation of communities and no one explains the difference be-
tween social and technological networks.

The clustering coefficient c for a given site i gives the probability that two
nearest neighbors of vertex i are also neighbors each other [2]. The average
clustering coefficient, c(k) for sites whose degree is k measures the tendency to
form cliques where each nearest neighbor of a node (with degree k) is connected
to each other. In real-world scale-free networks this usually decreases with a
power-law c(k) ∝ kψ because hubs tend to play the role of connections between
separate clusters in the graph, i.e. clusters that have few other interconnections
than the ones passing through the hub. Then the high degree node tends to have
low clustering coefficient.

We focus in this paper on three different kinds of complex networks with
relevance in finance: the network of boards and directors of the largest corpo-
rations, the network of stock price correlation and the network of shareholders
in the stock market. For each network we report the more relevant topological
properties and we present models of network formation accounting for some of
the observed properties.

2 The Board and Director Networks

We start with the network of boards and directors, a complex network in finance
which is also a social network.

This can be represented as a bipartite graph where two classes of nodes are
present (boards and directors) and an edge is always drawn between nodes be-
longing to different classes. In particular, a director is linked to a company if
he serves on the board of directors of the company. Such a graph can be pro-
jected onto the board network and onto the director network, where two boards
(directors) are connected by a weighted edge, the weight being proportional to
the number of directors (boards) they share. In fact, it occurs very often that
two boards share some of their directors, and in this case they are said to be
interlocked.

An example of board network is shown in Fig. 1: nodes represent boards
of directors, two boards are connected by an edge if they are interlocked. The
network represents the boards 1 degree of separation (in term of edges) away
from the board of Chase Manhattan Bank.

Boards of directors of corporations make decisions about the long-term strat-
egy, such decisions having considerable impact on the economic performance of
the corporation and collectively on the economy of a country.
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ABBOTT LABORATORIES

ALCOA INC

ALLIEDSIGNAL INC

AMERICAN HOME PRODUCTS CORP

AMERITECH CORP

BELL ATLANTIC CORP

BROWNING FERRIS INDUSTRIES INC

CBS CORP
CHAMPION INTERNATIONAL CORP

CHASE MANHATTAN CORP NEW

COOPER INDUSTRIES INC

CUMMINS ENGINE CO INC

DEERE & CO

DILLARD S INC

DUKE ENERGY CORP

ELECTRONIC DATA SYSTEMS CORP

EXXON CORP

FREEPORT MCMORAN COPPER & GOLD
GENERAL ELECTRIC CO

J C PENNEY CO INC
JOHNSON & JOHNSON

LUCENT TECHNOLOGIES INC

MAY DEPARTMENT STORES CO

MOTOROLA INC

NEW YORK TIMES CO

PFIZER INC
POLO RALPH LAUREN CORP

PROCTER & GAMBLE CO
ROCKWELL INTERNATIONAL CORP NE

RYDER SYSTEM INC

SPRINT CORP
UNION PACIFIC CORP

UNISYS CORP

UNOCAL CORP
WARNER LAMBERT CO

Fig. 1. The network of boards 1 degree of separation away from Chase Manhattan
Bank’s board.

Because large corporations’ boards are organized in a networks leading the
economy of a country, some issues are particularly relevant about these networks:
what the topological properties are and if they are similar in different countries.
What these topological properties mean about the corporate directorate elite
as a leading class. What mechanism of network formation can explain the ob-
served features. What effect the network structure has on the process of decision
making.

2.1 Topological Properties of Board and Director Networks

A number of recent works have been devoted to the study of the topological
properties of the board and director networks. Davis et al. [17] have studied the
network of the boards of Fortune 1000 in 1999 and have shown that both the
director network and the board network have Small World properties.

Newman et al. [18] have applied on the same data set a random graph model
showing that using the generating function method, it is possible to reproduce
very accurately the degree distribution of the director network. On the contrary,
their model fails in predicting the degree distribution of the board network. In
fact the director network turns out to be assortative as observed commonly in
social networks, meaning that directors with high (low) degree tend to be con-
nected to directors with high (low) degree. As a consequence even if the random
graph model predicts the right degree distribution for the director network it
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Table 1. Results for assortativity coefficient r and average clustering coefficient c̄ in the
Italian director network in 1986 and 2002 (D86, D02) ) and the Italian board network
(B86, B02)

D86 D02 B86 B02
r 0.131 0.121 0.250 0.322
c̄ 0.899 0.915 0.356 0.318

underestimates the number of boards with high number of interlocks and with
small number of interlocks.

As a general empirical finding, social networks are characterized by assorta-
tivity and high average clustering coefficient ( the latter measuring the average
fraction of connection between the first neighbors of a node out of all the possible
connections among them). We report in Table 1 the values of the assortativity
coefficient r (see [19]) and average clustering coefficient c̄ for two novel data
sets we collected and analyzed, namely the networks of boards of the companies
quoted on the Italian stock Market in 1986 and 2002. In Fig. 2 we report the
average nearest neighbors degree knn and the clustering coefficient c as a func-
tion of the degree of the nodes. As a general trend, nodes with high degree tend
to be connected to nodes with high degree, nodes with high degree tend to have
low values of c.

Newman et al. [20] have recently argued that the presence of groups or com-
munities in a social network is able to produce alone both assortativity and
clustering. They develop a model in which nodes belong to one or more groups
and have probability p to be connected to another node of the same group.
Instead they are never connected to nodes of groups they do not belong to. If
groups have heterogeneous size, than nodes who belong to a small group tend to
have low degree and are connected to others in the same group, who also have
low degree.

This model explains about 40% of the observed assortativity in the Fortune
1000 network. This means that some additional sociological mechanism is at
work, probably the fact that new board members are more likely to be recruited
among those who are already connected to some of the current board member.

Some of us have recently proposed a new model [21] to reproduce assortativity
in social networks. This is a network growth model and is a generalization of the
Barabási-Albert preferential attachment model [9], which is known to produce a
scale free network with no clustering and no assortativity. The generalization of
that model proposed by Catanzaro et al. allows for growth by addition of new
links between old nodes. In detail, at every step of growth:

1. with probability p a new node is wired to an existing one with the Barabási-
Albert preferential attachment rule (’rich gets richer’).

p
ki∑

j=1,N kj
. (1)
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Fig. 2. Comparison of some properties of board networks (left) and director networks
(right) in Fortune 1000 and MIB.
Top: degree distribution. Middle: average neighbors degree knn as a function of the
degree of the nodes. Bottom: clustering coefficient c(k) as function of the degree of
the nodes
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2. with probability (1−p) a new edge is added (if absent) between two existing
nodes. These are chosen on the basis of their degree. In other words, the
probability of adding an edge between node 1 and node 2 is P̃ (k1, k2). This
can be written as P1(k1)P2(k2|k1), the second factor being a conditional
probability. P1(k1) is the rule for choosing the first of the two nodes, and
again it is determined by the preferential attachment. The functional form
of P2(k2|k1) can be chosen arbitrarily, in order to favour the formation of
links between nodes of either similar or different degree. In this way, the
probability of adding a new edge and connecting two old non-linked nodes is

(1− p) ki∑
j=1,N kj

P2(k2|k1) (2)

In the limit of p = 1 the model reduces to a traditional BA tree. By tuning
the parameter p, it is possible to weight the role of growing (addition of new
nodes) and mixing (addition of new edges) in the microscopical behavior of the
network.

The authors explore two different functional forms for P2(k2|k1): an inverse
dependence

P2(k2|k1) ∝ 1
|k1 − k2|+ 1

(3)

and an exponential dependence

P2(k2|k1) ∝ e−|k1−k2|. (4)

In the first case the model produces a scale free network: the connectivity
degree is power law distributed with exponent monotonically increasing with p.

In the second case for p < 0.5 a peak at high degree appears in the degree
distribution.

In both cases the resulting network presents a core-periphery structure, where
hubs (highly connected nodes) connect with other hubs. This structure is empha-
sized in the exponential case, where the assortativity becomes so large to induce
a phase transition from a scale-free graph to a network with a characteristic scale
for high degrees.

On one hand, the model reproduces assortativity, reducing its emergence to
the role of mixing in growth. On the other hand, it fails in reproducing the
fact that the clustering coefficient decreases with the degree k in real social
networks. In real networks hubs tend to play the role of connections between
separate clusters in the graph, with few links between each other (apart from
the ones attached to the hub). Therefore these nodes tend to have low clustering
coefficient. In this model, on the other hand, all the hubs are aggregated together.
Thus, while producing an assortative network it cannot reproduce a network with
c(k) decreasing with k. See [21] for more details.

As a possible extension of such model we suggest that the choice of P1(k1)
could be modified as follows: when adding a new link between old nodes, the
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first one of these could be chosen at random, instead that with a preferential
attachment rule. With such a choice, high-degree nodes would not be privileged,
and the formation of a cluster of hubs might be avoided. Such an attachment
rule in the director network could be justified with the assumption that degree
is related to prestige as suggested in the sociological literature [17]. It is quite
reasonable to assume that individuals would like to be connected to others with
similar or higher prestige and to loose connection with individuals with lower
prestige. As a result individuals would tend to be connected to others with
similar prestige.

As a conclusion, a general model for network formation reproducing all the
statistical features observed in social networks is still object of search. We re-
ported some common features of boards and directors networks for US and Italy
and we discussed some recent models producing networks with assortativity and
high clustering coefficient.

2.2 The Impact of Network Structure
on the Decision Making Process

Topological properties reveal interesting features of the boards-directors eco-
nomical system. For example, it should be noted that both projections of the
bipartite graph display a giant connected component containing around 90 %
of the nodes. Moreover, while positive assortativity suggests a prestige related
dynamics (see above), high clustering coefficient and small world property de-
scribe a social system where common “friendships” and close proximity to each
other are typical. As well, it is interesting to observe that the Italian network,
for which we have two time snapshots, seems to be stationary, as suggested by
the substantial invariance of the shape of the degree distribution in the years.
A deeper investigation is required to explore the differences (if any) between
Italian and US market.

Some recent works have focussed on the influence of the structure of the
interlock network on the decisions made by boards. There are essentially two
kinds of decisions a board is faced with. Local decisions regard topics specific to
the board, such as the appointment of a vice president, for which boards can be
assumed not to influence each other. Battiston et al. [22] have shown the role of
subsets of well connected directors on decisions of this type.

By contrast, global decisions concern topics of general interest to the econ-
omy such as whether to increase or decrease investments in development or in
advertisement, which depend on the belief in economical growth or recession.
In these cases, decisions previously made in some boards might influence other
boards, through the presence of shared directors.

In a recent model, Battiston et al. [23] investigate the conditions under which
a large majority of boards making a same decision can emerge in the network.
In their model board directors are engaged in a decision making dynamics based
on ”herd behavior” and boards influence each other through shared directors.

They find that imitation of colleagues and opinion bias due to the interlock do
not trigger an avalanche of identical decisions over the board network, whereas
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the information about interlocked boards decisions does. There is no need to
invoke global public information, nor external driving forces. This model provides
a simple endogenous mechanism to explain the fact that boards of the largest
corporations of a country can, in the span of a few months, take the same
decisions about general topics.

3 Network of Price Correlations

The case of study is given by a network whose vertices are a fixed number of
stocks continuously traded at the New York Stock Exchange (NYSE) and the
edges are obtained by considering the return cross-correlations. The network is
a Minimal Spanning Tree (MST) connecting all the stocks. Spanning trees are
subgraphs of a graph which connect all the vertices of the original graph without
forming any loop.

It is interesting to note that when the stock correlations are described through
this method it is very easy to validate the models of portfolio dynamics. Specif-
ically we show that a simple model of uncorrelated Gaussian return time series
and the widespread one-factor model do not reproduce the topological quanti-
ties of interest. This last model is the starting point of the Capital Asset Pricing
Model [24] that is one of the most widely known models.

3.1 The MST Formation

The topological characterization of the correlation based MST of real data has
been already studied in [25]. But in our approach we use a smaller number N of
stocks, and number of time records T bigger than N . Our choice is motivated by
the request that the correlation matrix be positive definite. When the number
of variables is larger than the number of time records the covariance matrix is
only positive semi-definite [26]. Moreover, the application of the random matrix
theory to the spectral properties of the correlation matrix can be applied only
when T/N > 1.

We consider the daily price return ri(t) of asset i on day t. Given a portfolio
composed of N assets traded simultaneously in a time period of T trading days,
we extract the N×N correlation matrix. From each correlation coefficient ρi,j we
computed a metric distance di,j =

√
2(1− ρi,j) between asset i and j through

this relation [27,28]. The distance matrix is then used to determine the MST
connecting all the assets. We start with the two nearest sites (with respect to
the distance we just defined) and we connect them by a link. We then consider
the second shorter distance and we connect the sites involved. This last link may
happen to connect two new sites or it may link one of the previous two sites with
a new one. From the third shortest distance on, however, the link corresponding
to that distance may form a loop together with the previous links. We establish
a new link only if this does not form any loop with previous links. Iterating this
procedure of establishing links among vertices we obtain the minimal spanning
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tree of the network. The method of constructing the MST linking N objects
is known in multivariate analysis as the nearest neighbor single linkage cluster
algorithm [26].

3.2 The Data and the One Factor Model

The data set used here consists of daily closure prices for 1071 stocks traded
at the NYSE and continuously present in the 12-year period 1987-1998 (3030
trading days). It is worth noting that the ratio T/N � 2.83 is significantly larger
than one. With our choice the correlation matrix is positive definite and the
theoretical results of the random matrix theory are valid. Figure 3 shows the

Fig. 3. Correlation based minimal spanning tree of real data from daily stock returns
of 1071 stocks for the 12-year period 1987-1998 (3030 trading days). The node color
is based on Standard Industrial Classification system. The correspondence is: red for
mining - cyan for construction - yellow for manufacturing - green for transportation,
communications, electric, gas and sanitary services - magenta for wholesale trade -
black for retail trade - purple for finance, insurance and real estate - orange for service
industries - light blue for public administration.
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graph of the MST for the real data. The spatial coordinates have no meaning
here, the graph is just represented in a planar layout using the Pajek software
[29]. Different colors of the nodes correspond to the main industrial sector of
each firm according to the Standard Industrial Classification system [32] for
the main industry sector of each firm and the correspondence is reported in
the figure caption. Regions corresponding to different sectors are clearly seen.
Examples are clusters of stocks belonging to the financial sector (purple), to the
transportation, communications, electric gas and sanitary services sector (green)
and to the mining sector (red). The mining sector stocks are observed to belong
to two subsectors one containing oil companies (located on the right side of the
figure) and one containing gold companies (left side of the figure).

The empirical MST of real data can be compared with the results obtained
from simple models of the simultaneous dynamics of a portfolio of assets. The
simplest model assumes that the return time series are uncorrelated Gaussian
time series, i.e. ri(t) = εi(t), where εi(t) are Gaussian random variables with zero
mean and unit variance. This type of model has been considered in [33,34] as a
null hypothesis in the study of the spectral properties of the correlation matrix.
In the cited references it has been shown that the spectrum of the real correlation
matrix has a very large eigenvalue corresponding to the collective motion of the
assets. A random model does not explain this empirical observation and therefore
this fact clarifies why a better modeling of the portfolio dynamics is obtained
by using the one-factor model. The one-factor model assumes that the return of
assets is controlled by a single factor (or index). Specifically for any asset i we
have

ri(t) = αi + βirM (t) + εi(t), (5)

where ri(t) and rM (t) are the return of the asset i and of the market factor at
day t respectively, αi and βi are two real parameters and εi(t) is a zero mean
noise term characterized by a variance σ2

εi . Our choice for the market factor is
the Standard & Poor’s 500 index and we assume that εi = σεiw, where w is a
random variable distributed according to a Gaussian distribution.

We estimate the model parameters for each asset from real time series with
ordinary least squares method [24] and we use the estimated parameters to
generate an artificial market according to (5). A consequence of this equation
is that the variance (the squared volatility) of asset i can be written as the
sum of a term depending on the market factor and an idiosyncratic term. The
fraction of variance explained by the factor rM is approximately described by an
exponential distribution with a characteristic scale of about 0.16. The random
model can be considered as the limit of the one factor model when the fraction
of variance explained by the factor goes to zero.

3.3 Results of the Models

In the MST obtained with the random model few nodes have a degree larger than
few units. This implies that the MST is composed by long files of nodes. These
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Fig. 4. Correlation based minimal spanning tree of a numerical simulation of the one
factor model. The color codes are those used in figure 3.

files join at nodes of connectivity equal to few units. The MST obtained with the
one-factor model is very different from the one obtained with the random model.
In Fig. 4 we show the MST obtained in a typical realization of the one-factor
model performed with the control parameters obtained as described above. It is
evident that the structure of sectors of Fig. 3 is not present in Fig. 4. In fact the
MST of the one-factor model has a star-like structure with a central node. The
largest fraction of nodes link directly to the central node and a smaller fraction is
composed by the next-nearest neighbors. Very few nodes are found at a distance
of three links from the central node. The central node corresponds to General
Electric and the second most connected node is Coca Cola. It is worth noting
that these two stocks are the two most highly connected nodes in the real MST
also.

In order to characterize quantitatively the structure of the MST we make use
of two topological quantities. The first one is the distribution of the degree k. In
random graph this quantity is distributed according to a binomial distribution
which for large networks tends to a Poisson distribution.

The second topological quantity is frequently used for oriented graphs. For
any vertex i in the tree we count the total number of vertices a in the uphill
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Fig. 5. Frequency distribution of the degree of the MST of real data (circle). We also
show the mean degree distribution of random (triangle) and one-factor (square) model
averaged over 100 numerical realizations of the MST. The stars are the theoretical
values of the degree frequency for the random model in mean field limit. The inset
shows the corresponding rank plot of the degree in the three cases.

subtree whose root is i. This quantity is called drainage basin area in oriented
graphs of river networks [35], whereas it is usually referred as the in-degree
component in graph theory. To calculate the in-degree component in a correlation
based MST, we orient the MST according to the number of steps each node is
far from the most connected node (sink). When more than one sink is present
in the MST a preferential one is randomly chosen among them.

We report in Fig. 5 the frequency distribution for the degree k for the real
data and for the average over 100 realizations of the random model and of the
one factor model. The degree distribution for the MST of the real data shows
a power law behavior with exponent −2.6 for one decade followed by a set of
isolated points with high degree. A power law behavior with a similar exponent
has been observed in [25] and in another recent study [36]. The highest degree
kmax = 115 is observed for the General Electric, one of the most capitalized
company in the NYSE. As pointed out in a previous work [30], some important
companies clearly emerge for its high degree value indicating that they act as
a reference for other companies. The random model displays an approximately
exponential decay of the degree distribution. The value of the maximum degree
is small, kmax = 7.34 ± 0.92, showing that no asset plays a central role in the
MST. The correlation based MST of the random model can be considered as the
MST of a set of N points randomly distributed in an Euclidean space with d = T
dimension [31]. The N points have independent identically Gaussian distributed
coordinates ri = (ri(1), ri(2), ..., ri(T )) with i = 1, 2, ..., N . It has been shown
that the distribution of degree of the random MST in Euclidean space converges
to a specific distribution in the mean field limit d → ∞ [37]. The numerical



Emergence of Complexity in Financial Networks 411

Fig. 6. Frequency distribution of the in-degree component a of the MST of real data
(circle). We also show the mean in-degree component distribution of random (triangle)
and one-factor (square) model averaged over 100 numerical realizations of the MST.
The inset shows the corresponding rank plot of the in-degree component for the three
cases.

values of the degree frequency obtained from this mean field limit are shown
as a star in Fig. 5 for k = 1, .., 7. The agreement of theoretical values with the
numerical simulations is very good showing that the mean field limit is already
a good approximation for our T parameter.

The MST obtained from the one factor model is characterized by a rapidly
power-law decaying degree distribution and by an asset with a very high value of
the degree, which is indicated by an arrow in Fig. 5. The value of the maximum
degree is kmax = 718 ± 29. The corresponding asset is the center of the star
like structure of Fig. 4. The region with highest value of the degree contains
information about the stocks that act as reference for a large set of other stocks.
To get more insight in the structure of this high k region we show a rank plot
of the degree both for real data and for the considered models in the inset of
Fig. 5. For the real market it is evident the presence of a region of power law
extending for more than one decade. On the other hand, for the random model
many nodes have a similar value of the degree which is ranging for less than
an order of magnitude. This is due to the fact that there is no hierarchy in the
random model. The rank plot of the degree of the MST for the one factor model
has not a scale free behavior. Indeed, there is a single highly connected node
(the center) and a rapidly decaying degree as a function of the rank. This fact
corresponds to the simple one-center hierarchy of the MST of the one-factor
model.

A discrepancy between real data and models is also observed in the frequency
distribution of the in-degree component a defined above. Figure 6 shows the
frequency distribution of the in-degree component for real and surrogate data.
The inset of Fig. 6 shows the rank plot of the same data. In all three cases the
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in-degree component distribution has a power law behavior. This is particularly
clear for the MST of the random uncorrelated time series where the power law
lasts for more than two decades with an exponent of approximately −1.6. It
is known that for critical random trees the probability distribution of tree size
decays as a power-law with an exponent 3/2 [38]. A critical random tree is a tree
in which the mean number of children of each node is one. In a MST the mean
degree is exactly equal to 2n/(n−1) � 2. Hence when we orient the MST from the
root to the leaves we have a tree with one child for each node. Our result shows
that the in-degree component of the MST arising from random uncorrelated
time series has properties similar to the one of a critical random tree. This is
not the case for the one-factor model where the power law has greater absolute
slope due to the star-like structure of the tree. Neither models is actually able to
catch the oriented structure of real data whose in-degree component distribution
is in between the two models. The same arguments are also valid for the region
of high values of the in-degree component a as is evident from the rank plot in
the inset.

3.4 Comparison Between Data and Models

These results show that the topology of the MST for the real and for the consid-
ered artificial markets is different for both nodes with high degree and nodes with
low degree. If we define the importance of a node as its degree (or its in-degree
component), from our analysis emerges that the real market has a hierarchical
distribution of importance of the nodes whereas the considered models are not
able to catch such a hierarchical complexity. Specifically, in the random model
the fluctuations select randomly few nodes and assign them small values of de-
gree. Thus the MST of the random model is essentially non hierarchical. On the
other hand the MST of the one factor model shows a simple one-center hierarchy.
The MST of real market shows a more structured hierarchy of the importance
of the stocks which is not captured by the considered models. The topology
of stock return correlation based MST shows large scale correlation properties
characteristic of complex networks in the native as well as in an oriented form.
Such properties cannot be reproduced at all, even as a first approximation, by
simple models as a random model or the widespread one-factor model.

4 The Stock Investment Network

We now consider a rather different financial network formed by the companies
traded in a stock market and by the corresponding shareholders. A directed link
is drawn from the vertex representing a company to the vertex representing a
shareholder of the company itself. While this investment relationship graph has
in principle a bipartite nature (vertices can be assigned to two classes, compa-
nies and investors), it happens frequently that some shareholders of a certain
company are themselves companies the shares of which are traded in the market.



Emergence of Complexity in Financial Networks 413

Therefore the resulting network is in general a directed one where a significant
fraction of listed companies are owners of other listed companies, with no well-
defined bipartite structure. It is possible to consider the subnetwork restricted
to the owners which are listed companies themselves (hereafter the restricted
network). This yields the structure reported in Figs. 7, 8, 9 for different markets,
providing a description of the interconnections among stocks.

Whenever considering the whole investment relationships we will instead refer
to the extended network or simply the network. We define the portfolio diver-
sification as the in-degree ki of the investor i, corresponding to the number of
different assets in its portfolio. Vertices with zero in-degree are listed companies
holding no shares of other stocks. The out-degree of a vertex is the number of

Pajek

Fig. 7. Shareholder network for the Italian case.

Pajek

Fig. 8. Shareholder network for the NYSE case.
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Pajek

Fig. 9. Shareholder network for the Nasdaq case.

shareholders of the corresponding asset. Since the data are obviously restricted
to a limited number of investors per each asset, the out-degree of a company is a
biased quantity and we cannot deal with its statistical description. We note that
a weight can be assigned to each link, defined as the fraction sij of the shares
outstanding of asset j held by i multiplied by the market capitalization cj of the
asset j. We define portfolio volume the quantity vi =

∑
j sijcj representing the

total wealth in the portfolio of i.

4.1 Data Analysis

The data in our analysis report the shareholders of all stocks traded in the New
York Stock Exchange (NYSE), in the National Association of Security Dealers
Automated Quotations (NASDAQ), both in the year 2002, and in the Italian
stock market (MIB) in the year 2002. The corresponding number M of assets in
the markets is 2053, 3063 and 240 respectively.

On both the extended and the restricted nets, we consider the statistical
distribution P ′(k) of the number of vertices with in-degree greater than or equal
to k (see Fig. 10a). In all the extended nets the distribution always displays a
power-law tail of the form P ′(k) ∝ (k)1−γ . The corresponding probability density
is P (k) ∝ (k)−γ , where the values of the exponent γ are given by γnys = 2.37,
γnas = 2.22, γmib = 2.97. Market investments are therefore characterized by
a scale-free topology which resembles that displayed by many other complex
networks. By contrast, the restricted nets display no power-law behaviour (see
Fig. 10b). This means that the relevant contribution to the scale-free nature of
market investments comes from the investors outside the market.

It is also possible to compute the cumulative distribution θ′(v) describing the
number of investors with portfolio volume greater than or equal to v. As shown
in Fig. 11a, the tail of the distribution displays again a power-law behaviour
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Fig. 10. Integrated degree distribution for the extended networks (a on the left) and
the reduced one (b on the right).

Fig. 11. Empirical properties of the portfolio volume. a) Cumulative volume distribu-
tions computed on the extended nets. b) Scaling of v against k in real networks (data
points) and the power-law trend expected from the model (lines).

θ′(v) ∝ v1−α. The corresponding probability density is θ(v) ∝ v−α, with αnys =
1.95, αnas = 2.09, αmib = 2.24. It is interesting to observe that v represents
the invested wealth. Therefore the observed power-law tails can be considered
a generalization to z market investment context of the well-known Pareto tails.
Such tails appear in the right hand side of the curves representing the wealth
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distributions of different economies [39–42]. The left part of the portfolio volume
distribution also reflects the (functionally controversial) form of many observed
wealth distributions. In the following we are only interested in the right tails
of the distribution, so that the characterization of the remaining left part is
irrelevant.

Although the scale-free character of the degree is already known to be a
widely used topological feature, power-law distributions describing the sum of
vertex weights have only been addressed theoretically in the field of complex
networks [43]. Therefore our mapping of Pareto distributions (well established
in the economic context) in a topological framework provides an empirical basis
for the investigation of these specific properties of weighted networks.

4.2 Portfolio Diversification and Portfolio Volume

It is interesting to note that the above empirical results are in contrast with
the well-known Capital Asset Pricing Model [24] (CAPM). The latter predicts
that the optimal (risk-minimizing) portfolio includes all the M assets traded in
the market and it is such that the amount of wealth invested in each asset i is
proportional to the market capitalization ci of i. In other words, if i decides to
invest a total volume vi, the best choice is to invest in each asset j a capital
vicj/

∑M
k=1 ck. In our framework this would clearly imply a constant in-degree

ki = M for each agent i, even if the total invested volume v varies greatly among
the investors. One could suspect that the (very different) observed form of P (k)
is a biased result, since the investors of each asset j recorded in the data are
only those who invested in j an amount of money larger than a certain threshold.
However, since this threshold is usually of the form λcj (for example, λ = 0.0005
in the Italian data), the recorded shareholdings are those that obey:

vicj/

M∑

k=1

ck > λcj ,

which is satisfied if the volume vi is such that vi > λ
∑
k ck independently of cj . In

other words, the shareholdings of an investor behaving according to the CAPM
model are either all observed (if vi is sufficiently large) or all unobserved. This
means that, taking the above bias into account, the observed P (k) would again be
peaked at the single value k = M . These arguments, although quite simplified,
suggest that the non-trivial form of the in-degree distribution can genuinely
witness the deviation of the investors behaviour from the ideal scenario explored
by the CAPM. The above analysis provides therefore additional evidence of the
inadequacy of the model, whose predictions are already commonly thought to
be unrealistic (for instance by analysing price trends, see the preceding section).

The ideal scenario at the basis of the CAPM model is that all agents are
equally informed about the market and process this information in the same
way. Clearly, both hypotheses are unrealistic and result in a series of afore-
mentioned predictions which differ from the empirical findings. In the following
section we try to relax the above hypotheses into a stochastic model allowing
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the agents to have heterogeneous availability of information and to make differ-
ent choices even when equally informed. One basic idea of the model is that,
since the investors in our data are large long-term investors (and not short-term
speculators), their choices depend on the detailed (often private) information
that they need to gather concerning, for instance, the budgets and management
strategies of companies. For this information to be acquired, investors have to
face significant costs. Clearly, diversifying a portfolio by adding the asset j in it
is convenient when the cost of acquiring information about j is smaller than the
expected profit (in terms of risk reduction) associated to j. As a consequence,
large-volume portfolios (corresponding to holders who can face large information
acquisition costs) are therefore likely to display a large diversification as well.
The second ingredient of the model is to allow for two equally wealthy agents
to make different choices (due for instance to different preferred investment sec-
tors), even if assets with better expected long-term performance are statistically
more likely to be chosen.

4.3 Fitness Model Driven by Pareto’s Law

The above simple ideas (heterogeneous choices of the investors and information
acquisition costs) can be directly implemented by generalizing a recent model
[10] of network formation to the directed case. We assume that the probability
fij that the shareholder i invests in the asset j is a function of two quantities,
namely the total volume vi that i decides to invest and a second quantity yj
(which can also be a vector) characterizing j (such as its price history, expected
trend, etc.). By assuming the simplest separable form

fij = g(vi)h(yj)

we can directly express the expected in-degree k of an investor with volume v as

k(v) = g(v)htot

where htot is the total value of h(y) computed over all assets. If the above expres-
sion can be inverted to yield v(k), it is possible to compute the corresponding
in-degree distribution:

P (k) = θ[v(k)]
d

dk
v(k)

which clearly depends on the volume distribution θ(v). The corresponding ex-
pressions for kout(v) and P (kout) can be easily obtained, however (as we men-
tioned above) our information concerning kout is incomplete and we cannot there-
fore use it to validate the model. Similarly, any hypothesis on the form of h(y)
would yield results that cannot be tested on the data. For this reason, we avoid
any rigorous definition of y and deal only with the quantities related to v.

We therefore proceed by suggesting an explicit form for the quantities θ(v)
and g(v). The volume distribution θ(v) is chosen to display a power-law tail as
the observed one. We therefore set θ(v) ∝ v−α. The form of the attachment
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probability g(v) can instead be chosen by analogy with the traditional preferen-
tial attachment [9] mechanism. In the latter scheme, the attachment probability
is chosen as an increasing function of the pre-existing vertex degree. While the
common choice in the models is the linear one [1], its functional form can be
measured on real networks [1] and is found to be proportional to kβ . The case
β = 1 is the linear preferential attachment case, while β > 1 and β < 1 are the
superlinear and sublinear cases respectively. In the system under consideration,
the analogous choice would be g(v) ∝ vβ . Substituting θ(v) ∝ v−α and g(v) ∝ vβ
in the expression for P (k) yields (for large k)

P (k) ∝ (k)−γ γ = (α+ β − 1)/β

We therefore recover, as in the original model [10], that the scale-free degree
distribution can be obtained by letting the connection probability fij depend on
a power-law distributed quantity v.

An independent test of the model can be performed by noting that the above
hypotheses also result in the following expectation for k(v):

k(v) ∝ vβ

where β, once the values of γ and α are fixed to the empirical ones, is con-
strained to the value β = (1−α)/(1− γ). In Fig. 11b we superimpose the above
prediction to the points obtained from the data for each network. Indeed, the
model expectations are rigorously verified by the data, except for the low k re-
gion in MIB. A possible explanation for this anomaly is that, as we checked,
these points correspond to those investors holding a very large fraction (about
50%) of the shares of an asset, whose portfolio has therefore a large volume even
if its diversification is small. Clearly, these investors are the effective controllers
of a company. While in both US markets the fraction of links in the network
corresponding to such a large weight is of the order of 10−4 (so that their effect
is irrelevant on the plot of Fig. 11b), in MIB it equals the extraordinarily larger
value 0.13. This determines the peak at small k superimposed to the power-law
trend in the Italian market, and singles out an important difference between
MIB and the US markets. This suggests that the proposed mechanism fits well
the investors’ behaviour, apart from that of the effective holders of a company.

Interestingly, in all cases β > 1, corresponding to a superlinear attachment
mechanism. It is however worth noting that, while the traditional preferential
attachment rule yields scale-free topologies only in the linear case [1], here we
observe power-law degree distributions in the nonlinear case as well. This is
a remarkable result, since in order to obtain the empirical forms of P (k) the
exponent β does not need to be fine tuned, and the results are therefore more
robust under modification of the model hypotheses.

4.4 Further Topological Features of the Shareholder Networks

Besides proposing a model for the portfolio diversification, we report the study
of other topological features of the shareholder networks allowing to characterize
the different markets under study.
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Fig. 12. Distribution of the fraction w of shares of a stock owned by a holder in the
three shareholding networks. The distribution is computed over all stocks and holders
in each data set.

Differently from social networks, shareholding networks present low or absent
clusterization. Only 1%. of nodes have non-zero clustering coefficient in NYSE,
versus 12%. in MIB. In Nasdaq there is no clustering at all. In fact, US markets
consist of few stars with hundreds of leaves, the centers typically being investors
non quoted on the market.

Shareholding relationships, represented as edges departing from the owned
stock and pointing to the shareholder, are characterized by the following quan-
tities: the in-degree or portfolio diversification kstock of the stock (if this is also
a shareholder of other stocks), the in-degree k of the shareholder, the market
capitalization Cs of stock, the market capitalization Ch of shareholder ( if this
is also a quoted company), the percentage wij of shares of the stock i owned by
the shareholder j.

The distributions of the values w of the percentage of shares of single stocks
owned by single holders are shown in Fig. 12. The scale is linear-log. NYSE and
NASD have similar fast decaying distributions. MIB displays instead a bump for
values of shares just above 50%, meaning that in significative fraction of cases
the company is completely controlled a single holder. This is another obvious
difference between the US markets and the Italian market. Correlation between
amount of share and portfolio size will make this difference more clear.

The distributions P (k,w) of the number of shareholding relationships in-
volving a shareholder with portfolio size k and amount of shares w are shown
in Fig. 13 for NYSE and MIB SN. In US markets largest shares are held by
holders of any in-degree. In MIB largest shares are held by holders with low in-
degree, meaning that holders that have total control of a company tend to own
few stocks. In particular the picture shows an obvious cluster of relationships
in which the holder owns more than 40% of the shares but has a low portfolio
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Fig. 13. Horizontal axis: in-degree k of the node at the end of an edge (the portfolio
size of the holder), vertical axis: edge weight w (the fraction of shares owned by the
holder). Contour plot of P(k,w), the number of edges entering a node with in-degree
k and weight w. left: distribution of P(K2,W) for MIB. right: distribution of P(k,w)
for NYSE. Logarithmic color scale.

diversification. The cluster involves 24% of the shareholders. These holders are
typically (95%) non quoted companies. This means that there is a consistent
fraction of shareholders which control a quoted company and are not themselves
quoted on the market.

In all three markets there is a trend for companies to own companies with
smaller market capitalization (data not shown). We don’t find any correlation
between market capitalization and amount of owned shares. Values of market
capitalization were available only for quoted companies and not for all holders.

4.5 Effective Control Indexes

So far we did consider the weights of the networks under study in our analysis,
but we didn’t take into account the relative importance of a shareholder of a
stock with respect to the other shareholders of that same stock. It is clear that
the concentration of the ownerships plays a crucial role in financial strategy. We
thus compute two indexes to capture the fact that a 10 % shareholder holds
much more control if the other shareholders hold 1 % each, than if they hold 10
% each. This information is not contained in the amount of share alone nor in
the W distribution over all nodes. We define the following quantities.

SI =
(
∑
i∈holders wi)

2
∑
i∈holders w

2
i

(6)

where wij is, as defined above, the percentage of shares of the stock i owned
by the shareholder j. SI (Stock Index) gives the effective number of holders
controlling the stock. SI is close to 1 when there is a dominating holder. SI is
equal to N when there are N equally important holders. For each holder j and
each stock i we compute:
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Fig. 14. Stock index and Holder index distribution in the shareholding networks.
Top row: MIB. Bottom row: NASDAQ and NYSE. Left: SI distribution. Right: HI
distribution. SI measures the effective number of holders of a stock. HI measures the
equivalent number of stocks controlled by a holder.

h =
w2
ij

(
∑
k∈holders wik)2

(7)

Then for each holder we sum the above quantity for each of the stocks in his
portfolio.

HI =

∑
i∈stocks owned by j w

2
ij

(
∑
k∈holders of stock i wik)2

(8)

HI (Holder Index) gives the effective number of stocks controlled by a holder.
We report the distributions of SI and HI in Fig. 14. The results show that in

MIB the concentration of power among holders is distributed in a very different
way from US markets. In MIB there most companies are controlled by a single
holder. In the US markets most companies are controlled by about 6 holders.

Finally, in order to investigate whether holders controlling effectively sev-
eral stocks tend to have special topological properties in the network, we have
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searched for possible correlation between the indexes defined above and proper-
ties as in-degree, cluster coefficient and betweenness centrality. We find that SI
tend to decrease with the value of betweenness centrality. This means that com-
panies that are more central tend to be owned more evenly by several holders.
A further analysis in this direction will be the subject of a future work.
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89, 258702 (2002).
16. D.S. Callaway, J.E. Hopcroft, J.M. Kleinberg, M.E.J. Newman and S.H. Strogatz

Phys.Rev.E 64, 041902 (2001).
17. Davis, G.F., Yoo, M., Baker, W.E., The small world of the American corporate

elite, 1982-2001, Strategic Organization 1: 301-326 (2003).
18. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary

degree distributions and their applications, Phys. Rev. E 64, 026118 (2001).
19. M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89, 208701

(2002).



Emergence of Complexity in Financial Networks 423

20. M. E. J. Newman and Juyong Park, Why social networks are different from other
types of networks, Phys. Rev. E, in press.

21. M. Catanzaro, G. Caldarelli, L. Pietronero, Assortative model for social networks,
cond-mat 0308073 v1

22. Battiston, S., Bonabeau, E., Weisbuch G., Decision making dynamics in corporate
boards, Physica A, 322, 567 (2003).

23. Battiston, S., Weisbuch G., Bonabeau, E., Decision spread in the corporate board
network, submitted.

24. Y. J. Campbell, A. W. Lo, A. C. Mackinlay The Econometrics of Financial Mar-
kets, (Princeton University Press, Princeton,1997) and references therein.

25. N Vandewalle, F Brisbois and X Tordoir Quantitative Finance 1, 372 (2001).
26. K. V. Mardia, J. T. Kent and J. M. Bibby Multivariate Analisys, (CA: Academic,

San Diego, 1979).
27. J. C. Gower, Biometrika 53, 325 (1966).
28. R. N. Mantegna, Eur. Phys. J. B 11, 193 (1999).
29. V. Batagelj, A. Mrvar: Pajek – Program for Large Network Analysis. Con-

nections, 21(1998)2, 47-57. Home page for downloads: http://vlado.fmf.uni-
lj.si/pub/networks/pajek/

30. G. Bonanno, F. Lillo and R. N. Mantegna, Quantitative Finance 1, 96 (2001).
31. R. N. Mantegna and H. E. Stanley An introduction to econophysics: correlations

and complexity in finance (Cambridge University press, Cambridge, 2000).
32. The Standard Industrial Classification system can be found at

http://www.osha.gov/oshstats/naics-manual.html
33. L. Laloux, P. Cizeau, J. P. Bouchaud and M. Potters, Phys. Rev. Letters 83, 1467

(1999).
34. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral and H. E. Stanley,

Phys. Rev. Lett. 83, 1471 (1999).
35. I. Rodriguez-Iturbe and A. Rinaldo, Fractal River Basins, (Cambridge University

Press, Cambridge, 1997).
36. J.-P. Onnela, A. Chackraborti, K. Kaski, J. Kertész ArXiv:cond-mat/0303579 and

ArXiv:cond-mat/0302546
37. M. D. Penrose, The Annals of Probability 24, 1903 (1996).
38. T.E. Harris, The Theory of Branching Processes (Dover, New York, 1989).
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Campus Nord, 08034 Barcelona, Spain

2 Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
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Abstract. We present a statistical analysis of different metrics characterizing the
topological properties of Internet maps, collected at two different resolution scales: the
router and the autonomous system level. The metrics we consider allow us to confirm
the presence of scale-free signatures in several statistical distributions, as well as to
show in a quantitative way the hierarchical nature of the Internet. Our findings are
relevant for the development of more accurate Internet topology generators, which
should include, along with the properties of the degree distribution, the hierarchical
signatures reviewed in the present work.

1 Introduction

The relentless growth of the Internet goes along with a wide range of internet-
working problems related to routing protocols, resource allowances, and physical
connectivity plans. The study and optimization of algorithms and policies related
to such problems heavily rely on theoretical analysis and simulations that use
model abstractions of the actual structure of the Internet. On the other hand, in
order to extract the maximum benefit from these studies, it is necessary to work
with reliable Internet topology generators. The basic priority at this respect is
to best define the topology to use for the network being simulated. This implies
the characterization of how routers, hosts, and physical links interconnect with
each other in shaping the actual Internet.

In the last years, several research groups have started to deploy technologies
and infrastructures devoted to obtain a more detailed picture of the Internet.
These studies, aimed at tracking and visualizing the Internet large scale topology
and/or performance, are leading to Internet mapping projects at different reso-
lution scales. These projects typically collect data on Internet elements (routers,
domains) and the connections among them (physical links, peer connections), in
order to create a graph-like [1] representation of large parts of the Internet in
which the vertices represent those elements and the edges represent the respective
connections. Mapping projects focus essentially on two levels of topological rep-
resentation. First, by inferring router adjacencies it has been possible to measure
the Internet router (IR) level topology. The second measured topology works at
the autonomous system (AS) level and the connectivity obtained from AS rout-
ing path information. Although these two representations are related, it is clear
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that they describe the Internet at quite different length scales. In fact, each AS
usually groups a large number of routers, often geographically scattered, and
therefore the AS maps can be considered in some sense a coarse-grained version
of the IR maps.

Internet maps exhibit an extremely large degree of heterogeneity and the
use of statistical tools becomes mandatory to provide a proper mathematical
characterization of this system [2]. Statistical analysis of the Internet maps have
pointed out, to the surprise of many researchers, a very complex connectiv-
ity pattern with fluctuations extending over several orders of magnitude [3]. In
particular, a power-law behavior has been observed in metrics and statistical
distributions of Internet maps at different levels [3–11]. This evidence makes the
Internet an example of the so-called scale-free (SF) networks [12,13] and uncov-
ers a peculiar structure that cannot be satisfactorily modeled with traditional
topology generators. Previous Internet topology generators, based in the clas-
sical Erdös and Rényi random graph model [14,15] or in hierarchical models,
yielded an exponentially bounded connectivity pattern, with very small fluctua-
tions and in clear disagreement with the recent empirical findings. A theoretical
framework for the origin of scale-free graphs has been put forward by Barabási
and Albert [12] by devising a novel class of dynamical growing networks. At the
same time, several Internet topology generators yielding power-law distributions
have been subsequently proposed [16–18].

Data gathering projects [19–23] are progressively making available larger AS
and IR level maps which are susceptible of more accurate statistical analysis and
raise new and challenging questions about the Internet topology. For instance,
statistical distributions show deviations from the pure power-law behavior and
it is important to understand to which extent the Internet can be considered
a scale-free graph. The way these scaling anomalies—usually signaled by the
presence of cut-offs in the corresponding statistical distributions—are related to
the Internet finite size and physical constraints is a capital issue in the charac-
terization of the Internet and in the understanding of the dynamics underlying
its growth. A further important issue concerns the fact that the Internet is or-
ganized on different hierarchical levels, with a set of backbone links carrying the
traffic between local area providers. This structure is reflected in a hierarchical
arrangement of administrative domains and in a different usage of links and de-
gree of vertices. The interplay between the scale-free nature and the hierarchical
properties of the Internet is still unclear, and it is an important task to find
metrics that can exploit and characterize the hierarchical features on the AS
and IR levels. Finally, although one would expect Internet AS and IR level maps
to exhibit similar scale-free behavior, the different resolution in of maps might
lead to a noticeable diversity of metrics properties.

In this paper we present a detailed statistical analysis of large AS and IR level
maps [19,21,22]. We study the scale-free properties of these maps, focusing on the
degree and betweenness distributions. While scale-free properties are confirmed
for maps at both levels, IR level maps show also the presence of an exponential
cut-off, that can be related to constraints acting on the physical degree and load
of routers. Power-law distributions with a cut-off are a general feature of scale-
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free phenomena in real finite systems and we discuss their origin in the context
of growing networks [12,13]. At the AS level we confirm the presence of a strong
scale-free character for the large-scale degree and betweenness distributions.

Furthermore, we propose two metrics based on the clustering and the de-
gree correlation functions, that appear to highlight the hierarchical properties
of Internet maps. In particular, these metrics clearly distinguish between the
AS and IR levels, which show a very different behavior at this respect. While
IR level maps appear to possess a quite weak hierarchical structure, AS maps
fully exploit the hierarchy of domains around which the Internet revolves. The
differences between the two levels might be very important in the developing of
reliable Internet topology generators. Indeed, the testing of Internet protocols
working at different levels might need of topology generators accounting for the
different properties observed. Hierarchical features are also important to scru-
tinize theoretical models proposing new dynamical growth mechanisms for the
Internet as a whole.

2 Internet Maps

The Internet is usually portrayed as an undirected graph [1]. Depending on the
meaning assigned to the vertices and edges of the associated graph, we can obtain
different levels of representation, each one corresponding to a different degree of
coarse-graining with respect to the physical Internet [2].

Internet Router (IR) level: In the IR level maps, vertices represent the
routers, while edges represent the physical connections among them. In general,
all mapping efforts at the IR level are based on computing router adjacencies
from traceroute sequences sent to a list of networks in the Internet. The tracer-
oute command performed from a single source provides a spanning tree from that
source to every other (reachable) vertex in the network. By merging the infor-
mation obtained from different sources it is possible to construct IR level maps
of different portions of the Internet. In order to detect all the various cross-links,
however, a large number of source probes is needed. In addition, the instability
of paths between routers and other technical problems—such as multiple alias
interfaces—make the mapping a very difficult task [24]. These difficulties have
been diversely tackled by different Internet mapping projects, such as the Lucent
project at Bell Labs [23], the Cooperative Association for Internet Data Analysis
(CAIDA) [20], and the SCAN project at the Information Sciences Institute [22].

Autonomous System (AS) level: Nowadays the Internet can be partitioned
into autonomously administered domains which vary in size, geographical ex-
tent, and function. Each domain may exercise traffic restrictions or preferences,
and handle internal traffic according to particular autonomous policies. This fact
has stimulated the separation of the inter-domain routing from the intra-domain
routing, and the introduction of the Autonomous Systems Number (ASN). Each
AS refers to one single administrative domain of the Internet. Within each AS,
an Interior Gateway Protocol is used for routing purposes. Between ASs, an Ex-
terior Gateway Protocol provides the inter-domain routing system. The Border
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Gateway Protocol (BGP) is the most widely used inter-domain protocol. In par-
ticular, it assigns a 16-bit ASN to identify, and refer to, each AS. In the AS level
graphs each vertex represents an AS, while each edge between two vertices rep-
resents the existence of a BGP peer connection among the corresponding ASs. It
is important to stress that each AS groups many routers together, and the traffic
carried by a link is the aggregation of all the individual end-host flows between
the corresponding ASs. The AS map can be constructed by looking at the BGP
routing tables. In fact, the BGP routing tables of each AS contain a spanning
tree from that vertex to every other (reachable) AS. We can then try to recon-
struct the complete AS map by merging the connectivity information coming
from a certain fraction of these spanning trees. This method has been actually
used by the National Laboratory for Applied Network Research (NLANR) [19],
using the BGP routing tables collected at the Oregon route server, that gathers
BGP-related information since 1997. Enriched maps can be obtained from some
other public sources, such as Looking Glass sites and the Reseaux IP Européens
(RIPE) [9], getting about 40% of new AS-AS connections.

These graph representations do not model individual hosts, too numerous,
and neglect edge properties such as bandwidth, actual data load, or geographical
distance. For these reasons, the graph-like representation must be considered as
an overlay of the basic topological structure: the skeleton of the Internet. More-
over, the data collected for the two levels are different, and both representations
may be incomplete or partial to different degrees. In particular, measurements
may not capture all the vertices present in the actual network and, more often,
they do not include all the edges among vertices. It is not our purpose here to
argue about the reliability of the different maps. However, the conclusions we
shall present in this paper seem rather stable in time for the different maps [6].
Hopefully, this fact means that, despite the different degrees of completeness,
the present maps represent a fairly good statistical sampling of the Internet as
a whole.

In order to perform our analysis, we shall use the IR map collected during
October/November 1999 by the SCAN project with the Mercator software as
representative of the Internet router level. This map is composed by 228263
vertices and 320149 edges. At the autonomous system level we consider the AS
map collected at Oregon route server, dated May 25, 2001, made up by 11174
vertices and 23409 edges.

3 Average Properties

We start by discussing some metrics commonly used in graph theory: the vertex
degree ki, the minimum path distance between pairs of vertices dij , and the
clustering coefficient ci. The degree ki of a vertex is defined as the number of
edges incident to that vertex, i.e. the number of connections of that vertex with
other vertices in the network. If vertices i and j are connected we will say that
they are nearest neighbors. The minimum path distance dij between a pair of
vertices i and j is defined as the minimum number of vertices traversed by a
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path that goes from one vertex to the other. The clustering coefficient ci [25] of
the vertex i is defined as the probability that two vertices connected to i are also
connected to each other. Numerically it can be computed as the ratio between
the number of edges ei in the sub-graph identified by the nearest neighbors of i
and its maximum possible value ki(ki − 1)/2, corresponding to a complete sub-
graph, i.e. ci = 2ei/ki(ki − 1). The clustering coefficient ci takes values of order
O(1) for ordered networks. On the other hand, for random graphs [14,15], which
are constructed by connecting vertices at random with a fixed probability p, the
clustering coefficient is of order O(N−1).

The average degree of the AS and IR maps is 〈k〉AS = 4.2 and 〈k〉IR = 2.8,
respectively. This values are of order O(1), and therefore both maps can be
considered as sparse graphs. Despite the small average degree, however, the
average minimum path distance is also very small, compared to the size of the
maps, i.e. 〈d〉AS = 3.6 and 〈d〉IR = 9.5. That is, the Internet exhibits what is
known as the “small-world” effect [25]: in average one can go from one vertex
to any other in the system passing through a very small number of intermediate
vertices. This observation precludes the possibility that the Internet is shaped
as a regular two-dimensional grid, since in this case its characteristic distance
would scale with the number of nodes as 〈d〉 ∼ N1/2; with the present Internet
size, such scaling would imply that information packets would pass through
102–103 more nodes, depleting all communication capabilities of this network.
Since the network is nevertheless sparse, this necessarily implies that there are
some shortcuts which connect different regional networks, strongly decreasing
the value of 〈d〉 [25].

The small world evidence is strengthened by the empirical finding of clus-
tering coefficients of value 〈c〉AS = 0.30 and 〈c〉IR = 0.03, orders of magnitude
larger than the corresponding value for a Erdös and Rényi random graph of
the same size, O(N−1). As discussed above, this fact implies that neighbors of
the same vertex are very likely on their turn connected among themselves. The
high clustering coefficient of the Internet maps is probably due to geographi-
cal constraints. In Internet graphs, all edges are equivalent. Yet, the physical
connections are characterized by a real space length. The larger is this length,
the higher the cost of installation and maintenance of the physical line, favor-
ing therefore the preferential connection between nearby vertices. It is therefore
likely that vertices within the same geographical region will have a large number
of connections among them, increasing in this way the clustering coefficient.

The differences observed in the metrics’ average values are consistent with
the fact that the AS map is a coarse-grained representation of the IR map. The
IR level map is, for instance, sparser, and its average minimum path distance
is larger. The IR map has a small average degree, because routers have a finite
capacity and, therefore, can have a limited number of connections. On the con-
trary, ASs can have in principle any number of connections, since they represent
the aggregation of a large number of routers. This implies that AS maps have a
greater number of vertices with a high number of connections (hubs), providing
the large-distance shortcuts needed to produce a small average minimum path
distance.
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4 Scale-Free Properties

The analysis of the average clustering presented in the previous section makes
clear that the Internet does not resemble a star-shaped architecture with just
a few gigantic hubs and a multitude of singly connected vertices, nor a random
graph structure. On the other hand, the small average path distance rules out
as well the possibility of a regular grid architecture. These evidences suggest
a peculiar topology that will be clearly identified by looking at the detailed
statistical distributions. In particular, Faloutsos et al. [3] pointed out for the first
time that the connectivity properties of the Internet AS maps are characterized
by a probability distribution that a vertex has k edges (i.e. it is connected to
other k vertices) with the form p(k) ∼ k−γ , where γ � 2.1 is a characteristic
exponent. Noticeably, exponent values 2 < γ ≤ 3 imply a well defined 〈k〉,
while

〈
k2

〉
is diverging in the case of networks with infinite size. This behavior

signals the presence of scale-free degree properties; i.e. there is no characteristic
degree above which the probability is decaying exponentially to zero. In other
words, there is a statistically significant probability that a vertex has a very
large number of connections compared to the average degree 〈k〉. In addition,
the implicit divergence of

〈
k2

〉
is signalling the extreme heterogeneity of the

connectivity pattern, since it implies that statistical fluctuations are unbounded.
The work of Faloutsos et al. was followed by different studies of AS maps [6,9,
26], and IR maps [4,10]. Here, we will review the analysis of scale-free properties
in recent AS and IR level maps.

We start by considering the integrated degree distribution P (k) =
∑∞
k′=k p(k

′).
In the case of a pure power-law probability distribution p(k) ∼ k−γ , we expect
the functional behavior P (k) ∼ k1−γ . In Fig. 1 we show the integrated degree
distribution for the AS map. In this case a clear power law decay with exponent
γ = 2.1 ± 0.1 is observed, as it has been already reported elsewhere [3,6,26].
The reported distribution is also stable in time as found by analyzing different
time snapshot of the AS level maps obtained by the NLANR [6]. The heavy
tailed nature of the degree distribution has important consequences in the dy-
namics of processes taking place on top of this networks. Indeed, recent studies
about network resilience to removal of vertices [27] and virus spreading [28] have
shown that the relevant parameter is the ratio κ =

〈
k2

〉
/ 〈k〉 between the first

two moments of the degree distribution. If κ  1 then the network manifests
some properties that are not observed for networks with exponentially decaying
degree distributions. For instance, we can randomly remove practically all the
vertices in the network and a giant connected component [15] will still exist. In
the AS map we observe a wide degree distribution with a factor κ, which, being
determined effectively by the tail of the distribution, takes on a quite large value
compared with 〈k〉.

The degree distribution of the IR level map has a long tail with power-
law behavior that is, however, smoothed by a clear exponential cut-off. The
existence of a power-law tendency for small connectivities is better seen for
the probability distribution p(k), as shown in Fig. 2. A power law fit of the
form p(k) ∼ k−γ for k ≤ 100 yields the exponent γ = 2.1 ± 0.1, in agreement
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Fig. 1. Integrated degree distribution P (k) for the AS map. The solid line corresponds
to a power law decay P (k) ∼ k1−γ with exponent γ = 2.1.

10
0

10
1

10
2

k

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

p(k)

Fig. 2. Degree distribution p(k) for the IR map. The solid line is a power law decay
p(k) ∼ k−γ with γ = 2.1.
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with the exponent found for the integrated degree distribution in the AS map.
Nevertheless, for k  50 the IR map degree distribution follows a faster decay.
This picture is consistent with a finite size scaling of the form p(k) = k−γf(k/kc)
[29]. Here kc is a characteristic degree beyond which the distribution decays
faster than a power law, and f(x) has the asymptotic behavior f(x) = const.
for x � 1 and f(x) � 1 for x  1. Deviations from the power law behavior at
large connectivities have been also observed for the larger maps reported in [10].
In that work, the integrated probability distribution was fitted to the Weibull
distribution P (k) = a exp[−(k/kc)β ].

The presence of truncated power laws must not be considered a surprise,
since it finds a natural place in the context of scale-free phenomena. Actually,
bounded scale-free distributions (i.e. power-law distributions with a cut-off) are
implicitly present in every real world system because of finite-size effects or phys-
ical constraints. Truncated power laws are observed also in other real networks
[30] and different mechanisms have been proposed to explain the cut-off for large
connectivities. Actually, we can distinguish two different kinds of cut-offs in real
networks. The first is an exponential cut-off, f(x) = exp(−x), which can be
explained in terms of a finite degree capacity of the network elements [30] or in-
complete information [31]. This is likely what is happening at the IR level, where
the finite capacity constraint (maximum number of router interfaces) is, in our
opinion, the dominant mechanism affecting the tail of the degree distribution.
A second possibility is given by a very steep cut-off such as f(x) = θ(kc − x),
where θ(x) is the Heaviside step function. This is what happens in growing net-
works with a finite number of elements. Since SF networks are often dynamically
growing networks, this case represents a network which has grown up to a finite
number of vertices N . The maximum degree kc of any vertex is related to the
network age. The scale-free behavior is evident up to kc and then decays as a
step function since the network does not possess any vertex with degree larger
than kc. By inspecting Fig. 1, this second possibility appears realized at the
AS level. Indeed, the dominant mechanism at this level is the finite size of the
network, while connectivity limits are not present, since each AS is a collection
of a large number of routers, and it can handle a very large connectivity load.

The connection between finite capacity and bounded distributions is also
evident when inspecting other metrics, such as the betweenness. To go from
one vertex in the network to another following the minimum path, a certain
sequence of vertices is visited. If we do this for every pair of vertices in the
network, there will be a certain number of key vertices that will be visited more
often than others. Such vertices will be of great importance for the transmission
of information along the network. This evidence can be quantitatively measured
by means of the betweenness bi [32,33], defined as the number of minimum paths
that go through each vertex i. The betweenness can be used as a proxy to the
amount of traffic that goes through a vertex, if the minimum path distance is
considered as the metric defining the optimal path between pairs of vertices. In
this sense, it has been recently studied for AS maps under the name of “load” [34].

Considering the betweenness as a static estimate of the amount of traffic that
a vertex supports, then, if routers have a bounded capacity, the betweenness
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Fig. 3. Integrated betweenness distribution P (b) for the AS and IR maps.

distribution should also be bounded at large values. On the contrary, this effect
should be absent for the AS maps. In order to check this possibility, we analyze
the probability distribution p(b) that a vertex has betweenness b. The integrated
betweenness distribution P (b) =

∑∞
b′=b p(b

′) for the AS and IR maps is shown
in Fig. 3. The AS distribution is well fitted by a power law P (b) ∼ b1−γb with
an exponent γb = 1.9 ± 0.1. In the case of the IR map, on the other hand, the
betweenness distribution follows a truncated power law, in analogy to what is
observed for the connectivity distribution.

The similar behavior shown by the degree and betweenness distribution sug-
gests the possibility of a relationship between their respective power law ex-
ponents. Indeed, the betweenness and the degree can be simply related if one
assumes that the average number of shortest paths bk passing over a vertex of
degree k scales as

bk ∼ kβ . (1)

By inserting this expression into the integrated betweenness distribution, we
obtain

P (k) ∼ kβ(1−γb). (2)

Since we have that P (k) ∼ k1−γ , we obtain the scaling relation

β =
γ − 1
γb − 1

. (3)
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Fig. 4. Betweenness bk as a function of the vertex degree k. The solid line is a power
law bk ∼ kβ , with β = 1.1.

In Fig. 4 we report the direct measurement of the average betweenness of a
vertex of degree k. We obtain a power-law behavior with an exponent β ∼ 1.1, in
agreement with the scaling relation equation (3), for the independently measured
values of γ and γb.

It is worth to stress that while the power law truncation is an expected feature
of finite systems, the scale-free regime is the important signature of an emergent
cooperative behavior in the Internet dynamical evolution. This dynamics plays
therefore a central role in the understanding and modeling of the Internet. In
this perspective, the developing of a statistical mechanics approach to complex
networks [12] is providing a new dynamical framework where the distinctive
statistical regularities of the Internet can be understood in term of the basic
processes ruling the appearance or disappearance of vertices and edges.

5 Hierarchy and Correlations

The topological metrics analyzed so far give us a distinction between the AS
and IR maps with respect to the large degree and betweenness properties. The
difference becomes, however, more evident if we consider properties related with
the existence of hierarchy and correlations. The primary known structural dif-
ference in the Internet is the distinction between stub and transit domains (or
ASs) [2]. Transit ASs correspond to large backbones, providing national or inter-
national connectivity, or to regional providers serving large metropolitan areas.
Stub ASs, on the other hand, correspond to campus networks and local area
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networks. The purpose of transit ASs is to provide connectivity to stubs, min-
imizing the necessity of direct stub-stub connections. For this reason, transit
ASs are well interconnected among them, and link stub ASs in their geograph-
ical neighborhood. The primary characteristic of this domain hierarchy is that
traffic paths between vertices in the same domain stay entirely within that do-
main. For instance, stub ASs handle all traffic that originates and terminates
inside the AS boundaries, while a routing path between two vertices in different
stub ASs goes generally through one or more transit ASs. This traffic division
can be schematically represented as a hierarchical structure, roughly partitioned
into international connections, national connection, regional networks, and local
area networks. Vertices providing access to international connections or national
backbones are of course on top level of this hierarchy, since they make possible
the communication between regional and local area networks.

A heuristic way to quantify the hierarchical nature of the Internet levers
on the concept of backbones, links that carry traffic for a large fraction of all
the possible source-destination pairs. In other words, the traffic is not evenly
spread on all the links, but is canalized through the more central links and
hubs in the Internet, which are more used than others. This feature can be
measured by studying the traffic (or load) carried by the different edges and
vertices. The actual load, however, is not a topological quantity, and cannot be
directly computed from Internet maps. Nevertheless, we can use as a proxy for
its value the number of shortest paths among source-destinations pairs that go
through each vertex and edge, a definition that corresponds to the vertex and
edge betweenness introduced in the previous section. The vertex betweenness
distribution shown in Fig. 3 reveals that the load is not uniformly distributed,
but has a tendency to concentrate on a few vertices, while a large fraction of
peripheral vertices have a small betweenness value. It is possible to identify those
vertices that concentrate most of the load by analyzing the average betweenness
bk of the vertices with degree k, see Fig 4. In this plot we can check that the
betweenness is an increasing function of the degree for both the AS and IR
maps, which indicates that the vertices carrying the largest load are indeed
those with the largest degree, which, together with the interconnections among
them, form a well-defined backbone concentrating most of the traffic carried by
the network.

This hierarchical structure will introduce some correlations in the network
and it is an important issue to understand how these features manifest at the
topological level. In order to quantify the presence of hierarchies in Internet maps
we introduce two metrics based on the clustering coefficient and the nearest
neighbor average degree [6].

The clustering coefficient is defined as the probability that two neighbors
of a given vertex are also connected to each other. In Sect. 3 we have shown
that the clustering coefficient for the AS and IR maps is orders of magnitude
larger than the one expected for a random graph and, therefore, that they are
far from being random. Further information can be extracted if one computes
the clustering coefficient as a function of the vertex degree [6,35]. In particular,
the average clustering coefficient ck of vertices with degree k is defined as
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Fig. 5. Average clustering coefficient as a function of the vertex degree for the AS and
IR maps. The solid line is given by a power law ck ∼ k−0.8.

ck =
1

Np(k)

∑

i

ci δki,k, (4)

where c(i) is the clustering coefficient of vertex i, δki,k is the Kronecker symbol
and the sum runs over all possible vertices in the graph. In Fig. 5 we plot the
average clustering coefficient ck for vertices with degree k. In the case of the
AS maps this quantity follows a behavior that can be approximated by a power
law decay with an exponent around 0.8. For the IR map, however, except for a
sharp drop for large values of k, attributable to low statistics, it takes an almost
constant value. This implies that in the AS level vertices with a small number
of connections have larger local clustering coefficients than those with a large
degree. This behavior is consistent with the picture described above of highly
clustered regional networks sparsely interconnected by national backbones and
international connections. The regional clusters of ASs are probably formed by
a large number of vertices with small degree but large clustering coefficients.
Moreover, they should also contain vertices with large connectivities that are
connected with the other regional clusters. These large degree vertices will be on
their turn connected to vertices in different clusters which are not interconnected
and, therefore, will have a small local clustering coefficient. On the contrary, in
the IR level map these correlations are absent. Somehow the domain hierarchy
does not produce any signature at the single router scale, where the geographic
constraints and connectivity bounds probably play a more important role.
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Fig. 6. Nearest neighbors average degree for the AS and IR maps. The solid line is
given by the power law decay 〈knn〉k ∼ k−0.55. The horizontal dashed line marks the
value in the absence of correlations, 〈knn〉0k =

〈
k2〉 / 〈k〉 = 26.9, computed for the IR

map.

These observations for the clustering coefficient are supported by another
metric related with the correlations between vertex connectivities. These corre-
lations are quantified by the conditional probability pc(q | k) that, given a vertex
with degree k, it is connected to a vertex with degree q. With the available data,
a direct plot of pc(q | k) results very noisy and difficult to interpret [36]. Thus in
[6] we suggested to measure instead the nearest neighbors average degree of the
vertices of degree k,

〈knn〉k =
∑

q

q pc(q | k), (5)

and to plot it as a function of the degree k. If there are no degree correlations
(i.e. for a random network), then p0c(q | k) = q p(q)/ 〈k〉, where p(q) is the degree
distribution, and we obtain 〈knn〉0k =

〈
k2

〉
/ 〈k〉, which is independent of k. The

corresponding plots for the AS and IR maps are shown in Fig. 6. For the AS map
we observe a power-law decay for more than two decades, with a characteristic
exponent 0.55. This decay is the signature of the presence of negative degree
correlations, a property also known in physics and social sciences as dissasorta-
tive mixing [37]; i.e. high degree vertices have a statistical majority of vertices
with low degree, while the opposite holds for low degree vertices. This property
is another clear signature of the structural organization of the Internet at the
AS level. Vertices connectivity properties are arranged in a hierarchy of levels,
in which vertices at the top levels are more interconnected with vertices at the
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bottom levels and vice-versa. As in the analysis of the ck function, we can ob-
serve that there is not a finite amount of hierarchical levels (such as the binary
classification stub-transit), but rather we are in the presence of a continuum of
levels, in which each degree class k is characterized by a given value of ck and
〈knn〉k.

The IR map, on the other hand, displays a quite different behavior, that is
compatible with slight positive degree correlations (i.e. highly connected vertices
tend to be connected with vertices with large degree, and similarly for low degree
nodes [37]), but that can also be interpreted as an actual lack of correlations,
given the small fluctuations of the plot around the expected value for a random
network with the same degree distribution, 〈knn〉0k � 30. Again, the sharp drop
for large k can be attributed to the low statistics for such large connectivities.
Therefore, also in this case the two levels of representation show very different
features.

It is worth remarking that the present analysis of the hierarchical and cor-
relation properties shows quite marked different properties for the AS and IR
maps, differences that should be taken into account when developing Internet
topology generators. In other words, Internet protocols working at different rep-
resentation levels must be thought as working on different topologies. Topology
generators as well must include these differences, depending on the level at which
we intend to model the Internet topology.

6 Conclusions

The increasing availability of larger Internet maps and the proliferation of grow-
ing network models with scale-free features have recently stimulated a more
detailed statistical analysis aimed at the identification of distinctive metrics and
features for the Internet topology. At this respect, we have presented a detailed
statistical analysis of several metrics on Internet maps collected at the router
and autonomous system levels. The present analysis confirms the presence of
a power-law (scale-free) behavior for the degree distribution, as well as for the
betweenness distribution, that can be associated to a measure of the load of
the vertices in the maps. The exponential cut-offs observed in the IR maps,
associated to the limited capacity of the routers, are absent in the AS level,
which conglomerate a large number of routers and are thus able to bear a larger
load. The analysis of the clustering coefficient and the nearest neighbors average
degree shows in a quantitative way the presence of strong correlations in the In-
ternet degree at the AS level, correlations that can be related to the hierarchical
distribution of this network. These correlations, on the other hand, seem to be
of different sign and much smaller (or even nonexistent) at the IR level. The
correlation properties clearly indicate the presence of strong differences between
the IR and AS levels of representation. These evidences represent a step forward
in the characterization of the Internet topology, and will be helpful for scrutiniz-
ing more thoroughly the actual validity of the network models proposed so far,
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and as ingredient in the elaboration of new and more realistic Internet topology
generators [36].
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Abstract. Network principles describe uniformly systems as diverse as the cell or the
Internet. The emergence of these networks is driven by self-organizing processes that
are governed by simple but generic laws. While unraveling the complex and interwoven
systems of different interacting units, it has become clear that the topology of net-
works of different origin share the same characteristics on the large scale. In biological
systems, networks appear in many different disguises ranging from protein interactions
to metabolic networks. In this paper, we survey the most prominent characteristics
of biological networks focusing on the emergence of scale-free architecture and hierar-
chical arrangement of functional modules. Finally, we present empirical evidence that
cohesive parts of the protein interaction network have a significantly higher tendency
to be evolutionary conserved.

1 Introduction

Integrating the information collected about the world requires breaking the stud-
ied systems into comprehensible small parts and understanding the ways these
parts interact with each other. In many cases, the mutual relationships between
the components are best described as complex networks which offer us a new
way to categorize systems of very different origin in a single framework [1,2].
This approach has uncovered unexpected similarities between the organization
of various complex systems, indicating that the networks describing real systems
are governed by generic organization principles and mechanisms.

During the last decade, genomics has produced an incredible quantity of
molecular interaction data, contributing to maps of specific cellular networks.
The emerging fields of transcriptomics and proteomics have the potential to
join the already extensive data sources provided by the genome wide analy-
sis of gene expression at the mRNA and protein level [3–5]. Indeed, extensive
protein-protein interaction maps generated for a variety of organisms including
viruses [6,7], prokaryotes, like H.pylori [8] and eukaryotes, like S. cerevisiae [9–
15], C.elegans [16,17] and D. melanogaster [18] triggered a series of investigations
which aim on the topological properties of the underlying networks [15,19,20].
Beyond the current focus on uncovering the structure of genomes, proteomes
and interactomes of various organisms, some of the most extensive datasets are
the metabolic maps [21,22], laying the foundation of an increasing number of
studies focusing on the architecture of the metabolism [23–25].

A.-L. Barabási, Z.N. Oltvai, and S. Wuchty, Characteristics of Biological Networks, Lect. Notes Phys.
650, 443–457 (2004)
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Understanding the driving forces which shape networks with diverse con-
stituents and conceiving why these networks share similar topological features
allows biology to combine the numerous details about molecular interactions
into a single framework, offering means to address the structure of the cell as a
whole.

2 Basic Network Features

The most elementary networks measure is a nodes degree (or connectivity),
reflecting the number of neighbors k a particular node has. Basically, various
network topologies are mainly classified by the connectivity distributions P (k)
of their nodes.

As in most networks, there exist multiple paths between any two nodes i
and j. A useful distance measure is the length of the shortest path, lij . The
mean path length is defined as

〈l〉 =
2

N(N − 1)

∑

i<j

lij , (1)

offering a measure of the networks navigability. A network which can be traversed
by a relatively small number of steps is often called a ‘small world’ network: l
depends logarithmically on the network’s actual size, l ∼ logN . First illustrated
with social networks, two randomly chosen individuals can be connected by
only six intermediate acquaintances [26] although the actual worldwide web of
acquaintances consists of billions of nodes.

Nodes in many real systems exhibit a tendency to cluster, a network prop-
erty which can be quantified using the clustering coefficient [27]. This topological
measure reflects the extent to which the neighbors of a particular node are con-
nected to each other. For example, in a friendship network C tells the degree to
which friends of a particular person are friends with each other as well. Formally,
the clustering coefficient of node i is defined as

Ci =
2ni

ki(ki − 1)
, (2)

where ni denotes the number of links connecting the ki neighbors of node i to
each other. Accordingly, we can define the average clustering coefficient as

〈C〉 =
1
N

N∑

i=1

Ci. (3)

An additional important measure of the networks structure is the function C(k),
defined as the average clustering coefficient of all nodes with k links. If C(k) is
independent of k the network is either homogeneous or it is dominated by nu-
merous small tightly linked clusters. In contrast, if C(k) follows C(k) ∼ k−β , the
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network has a hierarchical architecture meaning that sparsely connected nodes
are parts of highly cohesive areas [28–31]. In such hierarchical networks, com-
munication between the different highly clustered neighborhoods are maintained
by a few hubs.

As we will see below, the degree distribution P (k) and the k dependence
of C(k) can have generic features, allowing us to classify various networks. Pa-
rameters such as the average degree 〈k〉, average path length 〈l〉 and average
clustering coefficient 〈C〉 characterize the unique properties of the particular
network under consideration.

3 Network Models

The main role of network models is to explain the emergence and behavior of
some of the most important network characteristics. As we will see, models play
a crucial role in shaping our understanding of complex networks.

3.1 Random Networks

While graph theory initially focused on regular graphs, since the 1950’s large
networks with no apparent design principles were described as random graphs
[32], proposed as the simplest and most straightforward realization of a complex
network. According to the Erdős-Rényi (ER) model of random graphs [33], we
start with N nodes and connect each pair of nodes with probability p, creating
a graph with approximately pN(N − 1)/2 randomly distributed links (first col-
umn in Fig. 1). The ER graph has a Poisson-like degree distribution indicating
that most nodes have approximately the same number of links, k ≈ 〈k〉 (first
column in Fig. 2) and exhibits the small-world property, seen as a proportion-
ality between the mean path length and the logarithm of the number of nodes,
L ∼ logN .

The growing interest in complex systems prompted many scientists to ask a
simple question: Are real networks behind diverse complex systems, like the cell,
fundamentally random?

3.2 Scale-Free Networks

A highly nontrivial development in our understanding of complex networks was
the discovery that for most large networks, such as the world wide web [34],
metabolic and protein interaction networks [15,23,25], the degree distribution
follows a power-law

P (k) ∼ k−γ . (4)

These networks are called scale-free, as a power-law does not support the exis-
tence of a characteristic scale. Two mechanisms, absent from the classical random
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Hierarchical networkRandom network Scale−free network

(a)

(e)

(c)(b)

(d) (f)

Fig. 1. (a) The random network model is constructed by laying down N nodes and
connecting each pair of nodes with probability p. The figure shows a particular real-
ization of such a network for N = 10 and p = 0.2. (b) The scale-free model assumes
that the network constantly grows by the addition of new nodes. The figure shows the
network at time t (nodes connected by green links) and after the addition of a new node
at time t+1 (red links). With the introduction of new nodes, already highly connected
ones are more favored to be connected to the new one than less connected nodes. This
procedure is called preferential attachment. (c) The iterative construction of a hier-
archical network starts from a fully connected cluster of four nodes (blue), which is
replicated three times. Subsequently, the peripheral nodes of each replica (green) are
connected to the central node of the original module. Repeating the replication and
the connection step with the 16-node module (red) leads to a 64-nodes network which
provides scale-free topology and is built by nested modules. (d) The random network
is rather homogeneous, i.e. most nodes have approximately the same number of links.
(e) In contrast, a scale-free network is extremely inhomogeneous: while the majority
of nodes has one or two links, a few nodes have a large number of links preserving
the systems integrity. To show this, five nodes with the highest number of links are
colored red, and their first neighbors are colored green. While in the random network
only 27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are, demonstrating the key role hubs play in the scale-free
network. Note, that both networks contain the same number of nodes and links. (f)
A hierarchical network still preserves its scale-free organization and displays inherent
modularity of nodes. The nodes affiliation to a certain module is indicated by different
colors. However, the underlying networks structure clearly indicates blurred boundaries
of its modules.
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Fig. 2. (a) For the random graph, the degree distribution, P (k), which gives the
probability that a randomly selected node has exactly k edges, follows a Poisson dis-
tribution which is strongly peaked at the average degree 〈k〉 and decays exponentially
for large k. (b), (c) P (k)’s of a scale-free and a hierarchical network do not have a
peak and decay as a power-law, P (k) ∼ k−γ . (d), (e) For both the random and the
scale-free network, the C(k) function, which denotes the mean clustering coefficient for
nodes with exactly k links, is independent of k. (f) In contrast, C(k) of a hierarchical
network depends on k, decaying as C(k) ∼ k−1. Insets correspond to the number of
the underlying networks.

network model, are responsible for the emergence of this power-law degree dis-
tribution [34,35]. First, most networks grow through the addition of new nodes,
that link to nodes already present in the system. Second, in most real networks
there is a higher probability to link to a node with a large number of connections,
a property called preferential attachment. The scale-free model introduced by
Barabási and Albert (BA) (second column in Figs. 1 and 2) incorporates these
features. Starting from a small graph, at each time step a node with m links is
added to the network, connecting to a previously present node i with probability

Πi = ki
/∑

j

kj , (5)

where ki is the degree of node i. The network generated by this growth pro-
cess will be scale-free with degree exponent γ = 3. In a scale-free network the
probability that a node is highly connected (k  〈k〉) is statistically more sig-
nificant than in a random graph. Thus, the networks properties are governed
by a relatively small number of highly connected nodes or hubs. An important
consequence of the hubs is that scale-free networks exhibit high tolerance to
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random perturbations but are sensitive to targeted attack on the highly con-
nected nodes [36–38]. Accordingly, failure of randomly selected nodes cannot
destroy the networks integrity. However, the systematic removal of the hubs will
rapidly fragment the network. This feature is of particular importance for biolog-
ical systems, since it reflects the biochemical networks resilience against random
mutations.

Protein interactions offer another opportunity to study cellular networks,
considering proteins as nodes and physical interactions as links. It has been
shown that interaction networks of S. cerevisiae, H.pylori, C.elegans and D.
melanogaster proteins exhibit distinct scale-free behavior [15,17,18,20]. Although
protein interaction data are derived from different sources and are retrieved
by different methods, the emergence of the scale-free property appears to be a
robust feature [39]. As previously discussed, scale-free networks are vulnerable
upon targeted attack on their highly connected nodes. Therefore, mutations of
highly interacting proteins are expected to be lethal for the cell. Analogously,
highly connected nodes in biochemical networks might be potential candidates
for drug targets.

The presence of hubs in a scale-free network has a fundamental impact on
virus spreading as well. Classical epidemiological models predict that infec-
tious diseases with transmission probability under an epidemic threshold will
inevitably die out. However, in scale-free networks the epidemic threshold is
reduced to zero [40]. Thus, as some social and sexual networks are known to
exhibit a scale-free topology [41], even extremely weakly infectious viruses can
spread and prevail, making random immunization ineffective.

3.3 Hierarchical Networks

Many real networks are expected to be fundamentally modular, meaning that the
network can be seamlessly partitioned into a collection of modules. Each module
is expected to perform an identifiable task, separable from the function of other
modules [42–45]. Therefore, we must reconcile the scale-free property with the
networks potential modularity. Numerical simulations indicate that neither the
random nor the scale-free network model are modular.

In order to account for the coexistence of modularity, local clustering and
scale-free topology in real systems, we have to assume that clusters combine in
an iterative manner, generating a hierarchical network [29,46]. Such networks
emerge from an iterative duplication and integration of clustered nodes, a pro-
cess which in principle can be repeated indefinitely. Our starting point is a small
cluster of four densely linked nodes. Next, we generate three replicas of this hy-
pothetical module and connect the three external nodes of the replicated clusters
to the central node of the old cluster, obtaining a large 16-node module. Sub-
sequently, we again generate three replicas of this 16-node module, and connect
the 9 peripheral nodes of each replica to the central node of the old module,
obtaining a new module of 64 nodes (third column of Fig. 1).

The hierarchical network model seamlessly integrates a scale-free topology
with an inherent modular structure by generating a network that has a power
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a b
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Fig. 3. Map and statistical characteristics of the protein-protein interaction network of
S. cerevisiae [15]. a: The color code of nodes refers to the phenotypic effect the deletion
of the respective protein has on the organism (red: lethal, green: viable, orange: slowed
growth, yellow:unknown). b: Connectivity distribution of the proteins degree k follows
approximately a power-law P (k) ∼ k−γ indicating the scale-free nature of the proteome
c: The clustering coefficient measuring the cliquishness of the networks nodes exhibits
a power-law dependence on the nodes degree C(k) ∼ k−β , indicating the presence of
modules in the network.

law degree distribution with degree exponent γ = 1 + ln 4/ ln 3 = 2.26. Yet,
the most important signature of this hierarchical modularity is the fact that
the clustering coefficient, C(k), scales as k−1 (third column of Fig. 2). Note,
that for the network generated by the ER and BA models C(k) is independent
of k.

In protein-protein interaction networks (Fig. 3a), the power-law dependence
of the degree distribution P (k) ∼ k−γ indicates its scale-free topology (Fig. 3b)
[15]. In addition, we observe that the clustering coefficient of this network C(k)
scales as C(k) ∼ k−β , indicating the presence of modules in the network (Fig. 3c)
[39,47,48]. A cell’s metabolism consists of a set of biochemical reactions shaping
a network featuring chemical substances (the metabolites) as nodes and their
participation in these reactions as links. Similar to protein-protein interaction
networks, metabolic networks have scale-free topology since their degree distri-
butions feature a power-law [15]. Furthermore, the clustering coefficient varies
with the inverse degree, C(k) ∼ k−1, indicating an inherent hierarchical modu-
larity [28]. In order to discern the discrete modules, for each pair of nodes, we
define the topological overlap [28]

OT =
Jn(i, j)

min(ki, kj)
, (6)
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a b

c

Fig. 4. Uncovering the underlying modularity of a complex network. a: Topological
overlap illustrated on a hypothetical network. On each link, we indicate the topologi-
cal overlap for the connected nodes, and in parentheses next to each node we indicate
the node’s clustering coefficient. b: The topological overlap matrix corresponds to the
small network shown in a. The rows and columns of the matrix were reordered by
the application of an average-linkage clustering method to its elements, allowing us
to identify those nodes which have a high topological overlap. The associated tree re-
flects the three distinct modules built into the model of a, as well as the fact that
the EFG and HIJK modules are closer to each other in a topological sense than to
the ABC module. c: Hierarchies of topological modules in the E.coli metabolism. The
branches of the tree obtained by average-linkage clustering of the topological overlap
of metabolites [28] are color-coded to reflect the predominant biochemical classifica-
tion of their substrates. The biochemical classes represent carbohydrate metabolism
(blue); nucleotide and nucleic acids metabolism (red); protein, peptide and amino acid
metabolism (green); lipid metabolism (cyan); aromatic compound metabolism (dark
pink); monocarbon metabolism (yellow) and coenzym metabolism(light orange) [21].
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Fig. 5. Relationship between the topology of a protein interaction network and the
evolutionary conservation of individual proteins. The panel shows the detailed conser-
vation rates of fully connected 3- (inset a), 4- (a) and 5- (b) node motifs. For example,
(b) indicates that in human less than 1% of the pentagon motifs found originally in
yeast have fully disappeared (i.e., none of their components have an ortholog), and
only 1.5% of motifs have a single ortholog component (n = 1), while for more than
69% of the motifs each of the five proteins have been conserved (n = 5).

where Jn(i, j) denotes the number of nodes to which both i and j are linked
(plus 1 if there is a direct link between i and j) and min(ki, kj) is the smaller of
the ki and kj degrees. This topological measure, which scales from 0 to 1, reflects
the extent to which two metabolites i and j interact with the same substrates.
If the latter are part of larger metabolic modules they appear to have a higher
topological overlap with their neighbors (Fig. 4a,b). The application of average-
linkage clustering to the obtained overlap matrix has been used to uncover the
topological modules present in the metabolism (Fig. 4c). The organization of
clusters identified a hierarchy of nested topological modules of increasing sizes
and decreasing interconnectedness. The hierarchical tree offers a breakdown of
the metabolism into several large modules which are further partitioned into
smaller but more integrated submodules, reflecting a certain degree of inher-
ent self-similarity. Some of these modules have been found to be in excellent
agreement with the known functional classification of metabolites [49].

Other approaches to discern modules in metabolic networks focused on the
appearance of edges in mutual shortest paths in the network [50,51]. The most
frequent edges were identified and removed in an iterative manner, uncovering
again the underlying functional modules. Modularity does not, however, imply
clear-cut subnetworks which are linked in well-defined ways. In fact, the bound-
aries of modules are often considerably blurred, triggered by highly connected
nodes which interconnect modules.

3.4 Network Motifs

Many biological functions are carried out by the integrated activity of highly
interacting cellular components referred to as functional modules. Motifs, con-
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Fig. 6. The evolutionary conservation of motif constituents. The third column denotes
the number of motifs of a given kind found in the yeast protein interaction network of
3,174 proteins, obtained by counting all subgraphs of two to five nodes. We identified
678 proteins that have an ortholog in each of the five studied higher eukaryotes, and
identified all motifs for which each component belongs to this evolutionary conserved
protein subset. The natural conservation rate shows what fraction of the original yeast
motifs are evolutionary fully conserved. For example, we find that 47% of the fully
connected pentagons (#11) have each of their five proteins conserved in each of the
five higher eukaryotes. The random conservation rate therefore denotes the fraction of
motifs which are found to be fully conserved for the random ortholog distribution. The
last column denotes the ratio between the natural and the random conservation ratios,
indicating that all motifs are highly conserved, some (for example #11) having a nat-
ural conservation rate 2,256 times higher than expected in the absence of correlations
between protein conservation rate and the topology of a given motif.

sidered as topologically distinct interaction patterns within complex networks,
may represent the simplest building blocks of such modules [45,52]. Owing to
their small size, motifs can be explicitly identified and enumerated in various cel-
lular networks, but their biological significance, if any, remains undetermined. A
well-known signature of the conservation of specific cellular functions is the evo-
lutionary conservation of orthologous proteins that are responsible for selected
functions. We call proteins of different species orthologous if they have diverged
in two lineages from a common ancestor. If there is indeed an evolutionary
pressure to maintain specific motifs, their components should be evolutionary
conserved. An analysis aiming on the evolutionary conservation of motifs deter-
mined from a web of yeast protein interactions [53] uncovers a trend toward the
preferential retention of highly cohesive motifs [54]. Figure 5 shows that larger
fully connected motifs are widely conserved as a whole, meaning that all the
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motif’s constituents have an ortholog in higher eukaryotes such as H.sapiens,
M.musculus, D.melanogaster, C.elegans and A.thaliana [55].

These results indicate that the orthologs are not randomly distributed in the
yeast protein interaction network, but are the building blocks of cohesive motifs,
which tend to be evolutionary conserved. If the same number of orthologs were
randomly placed on the yeast protein interaction network, mimicking the absence
of any correlations between the network topology and the ortholog position, the
motif conservation observed above should disappear. Indeed, motifs under such
random ortholog distribution display a trend opposite to that observed for the
original non-random system: The larger the motif, the smaller is the likelihood
that each of its components is conserved (Table in Fig. 6). The influence of
the global network topology on the retention rate of specific local motifs is best
quantified by calculating the ratio between the real and the random conservation
rate. Interestingly, for each motif this conservation ratio is bigger than one and
increases significantly for larger motifs (table in Fig. 6). These exceptionally high
conservation rates strongly suggest that participation within motifs significantly
influences the evolutionary conservation of their specific components.

4 Conclusions

The power-law degree distribution, the quantitative signature of a scale-free
network, has emerged as one of the few universal laws characterizing cellular
networks. Of even greater immediate importance is the intriguing possibility of
using the insights provided by the scale-free models as a framework to facili-
tate the analysis of biological networks at a higher level of abstraction. Such
approaches could reveal salient features of biological phenomena missed by non-
network based approaches. The appearance of hierarchical modularity in bio-
logical networks supports the assumption that evolution acts on many levels.
The accumulation of local changes, affecting the small highly integrated mod-
ules, slowly impacts the larger, less integrated modules as well. Thus, evolution
might act in self-similar fashion, copying and reusing existing modules to further
increase the organism’s complexity. This conclusion is further supported by the
lately uncovered tendency that the constituents of highly cohesive interaction
motifs are preferentially conserved, as orthologs in higher eukaryotes. Obviously,
the topological placement of proteins is a crucial factor for their tendency to be
evolutionary conserved suggesting that proteins organized in a cohesive subpart
of the interaction network might be duplicated and subsequently altered as a
whole in order to develop new biological functions. Especially in the face of eu-
karyotic evolution, this perception might be suitable to describe the explosion
of complexity in the development of the single-celled S. cerevisiae toward the
multicellular H. sapiens.

The universal applicability of these network concepts to the different layers
of biological informations - genome, transcriptome, proteome and metabolome –
allows us to draw a picture of the complex relationships between these compo-
nents. In a simple complexity pyramid, various molecular components - genes,
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Fig. 7. From the particular to the universal: The bottom (level 1) of the pyramid shows
schematic representation of the cell’s functional organization: genome, transcriptome,
proteome and metabolom. Insights into the cell’s organization can be obtained if we
consider the components to be linked by functional relationships, such as regulatory
motifs and metabolic pathways (level 2). In turn, they are the building blocks of op-
erational modules (level 3) which are nested and considerably blurred, generating a
scale-free hierarchical architecture (level 4). Although the individual components are
unique, the topological properties of biological networks share astounding similarities.
This suggests that universal organizing principles apply to all kinds of complex net-
works [56].

RNAs, proteins and metabolites – are linked by functional relationships giving
rise to recurrent patterns such as metabolic pathways and genetic regulatory
motifs. On a succeeding level of abstraction, motifs and pathways are seamlessly
integrated to form functional modules which are responsible for distinct cellular
functions [42]. These modules are nested, considerably blurred and generate a
scale-free, hierarchical architecture (Fig. 7).

The recent progress in biological networks analysis [57] has successively un-
covered the skeleton and organization of networks, offering important insights
about the assembly and functionality of components and subnetworks. In future,
we will need to go several steps further addressing the dynamic aspects of vari-
ous cellular networks. Especially, the analysis of fluxes and fluctuations along the
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links in metabolic and regulatory pathways will play a major role, significantly
influencing potential biotechnological applications.
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Abstract. Biological systems form complex networks of interaction on several scales,
ranging from the molecular to the ecosystem level. On the subcellular scale, interac-
tion between genes and gene products (mRNAs, proteins) forms the basis of essential
processes like signal transduction, cell metabolism or embryonic development. Recent
experimental advances helped uncover the qualitative structure of many gene control
networks, creating a surge of interest in the quantitative description of gene regulation.
We give a brief description of the main frameworks and methods used in modeling gene
regulatory networks, then focus on a recent model of the segment polarity genes of the
fruit fly Drosophila melanogaster.

The basis of this model is the known interactions between the products of the
segment polarity genes, and the network topology these interactions form. The inter-
actions between mRNAs and proteins are described as logical (Boolean) functions. The
success in reproducing both wild type and mutant gene expression patterns suggests
that the kinetic details of the interactions are not essential as long as the network of
interactions is unperturbed. The model predicts the gene patterns for cases that were
not yet studied experimentally, and implies a remarkable robustness toward changes in
internal parameters, initial conditions and even some mutations.

The success of this approach also suggests a wide applicability of real-topology-
based Boolean modeling for gene regulatory networks. In cases when the information
about the system is incomplete, Boolean modeling can verify the sufficiency of inter-
actions and can propose ways to complete the network. After a coherent picture is
obtained, more realistic kinetic models can be used to gain additional insights into the
functioning of the system.

1 Introduction

1.1 Complex Networks in Genetic Regulation

Recent remarkable progress in molecular biology has led to a complete map
of the genomes of many organisms, and the identification and classification of
the proteins is well under way. The next major challenge is to determine all
the interactions between genes, proteins and other cellular components and to
integrate this knowledge into a system-level understanding. It is now widely rec-
ognized that the networks of interaction and regulation between cellular entities
are highly complex, and their understanding needs a concerted effort between
experiment, modeling and theory.

R. Albert, Boolean Modeling of Genetic Regulatory Networks, Lect. Notes Phys. 650, 459–481 (2004)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2004
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Fig. 1. Genes regulate each other’s activity through regulatory networks. Gene tran-
scription into mRNA is influenced by transcription factors, themselves products of
other genes. In addition, post-translational modifications lead to proteins with modi-
fied properties.

Genes and gene products interact and form networks on several levels [1]. On
the genomic level, a class of proteins called transcription factors can activate or
inhibit the transcription of genes into mRNAs. Since these transcription factors
are themselves products of genes, the ultimate effect is genes regulating each
other’s expression by forming so called gene regulatory networks. Proteins can
participate in diverse chemical reactions that lead to modified proteins with
different functions than the originals. Several proteins can also bind to form
protein complexes with new roles. Proteins that are members of a class called
enzymes catalyze the biochemical reactions forming the base of cellular processes
(e.g. metabolism). In many cases the different-level interactions are integrated,
for example in signal transduction networks the presence of an external signal
(a chemical attractor or a hormone) triggers a cascade of interactions that can
involve both biochemical reactions and regulation.

The focus of this article is gene regulatory networks whose components are
genes, mRNAs and proteins, and the interactions include transcription, transla-
tion, transcriptional regulation and posttranslational reactions (see Fig. 1). We
can realize from this description that gene regulatory networks cannot be com-
pletely described by a standard graph of nodes and edges. Specifically, the nodes
have distinct identities as they correspond to diverse cellular components, and
the edges can have two different signatures (signs) corresponding to activation
and inhibition.

Gene regulatory networks play a crucial role during development, the process
in which a unicellular egg gives rise to an adult [2]. Each cell in a developing
embryo has the same DNA, but at no time in their life cycle are all of their
genes expressed, i.e. transcribed into mRNA and synthesizing protein. The basis
of cell differentiation is differential gene expression, and this is accomplished by
interactions between genes, i.e. gene regulatory networks [3].
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1.2 Modeling Gene Regulatory Networks

When trying to understand the role and functioning of a gene regulatory net-
work, the first step is to assemble the components of the network and the interac-
tions between them. This structural information needs to be complemented with
information or hypotheses regarding the kinetics of the interactions. Since de-
velopment is a dynamic process in which the expression of genes can constantly
change, gene network models need to have a dynamical aspect, i.e. they need
to define a state variable for each component, and study how this state changes
by the interactions in the network. This state variable can correspond to the
concentration of mRNAs and proteins, or it can be a binary value corresponding
to the qualitative statement that a gene is expressed or not.

A complete gene regulatory network model incorporates experimental knowl-
edge about the components and their interactions as well as the initial state of
these components, and leads to the known final state or dynamical behavior of
the network. Validated models then are able to investigate cases that cannot be
explored experimentally, for example changes in the initial state, in the compo-
nents or in the interactions, and they can lead to predictions and insights into
the functioning of the system.

1.3 Pioneering Work in Modeling Gene Regulatory Networks

The experimental advances in the mapping of gene regulatory networks are fairly
recent, but modeling general aspects of gene regulatory networks dates back to
the end of 1960s thanks to the pioneering work of Stuart Kauffman and René
Thomas.

In the absence of experimental results, Stuart Kauffman considered an ide-
alized representation of a typical (random) gene network [4,5]. He assumed that
genes are equivalent, and their interactions form a directed graph in which each
gene receives inputs from a fixed number K of randomly selected neighbors. The
state of genes is described by binary (ON/OFF) variables, and the dynamic be-
havior of each variable, that is, whether it will be ON or OFF at next moment,
is governed by a Boolean function. In general, a Boolean or logical function is
written as a statement acting on the inputs using the logical operators “and”,
“or” and “not” and its output is 1(0) if the statement is true (false). In a Ran-
dom Boolean Network (RBN) the functions governing the state of each node are
randomly selected from the 22K

possible K-input Boolean functions, and kept
fixed afterward. Kauffman studied the dynamics of these RBNs, focusing on the
attractors (usually cycles) in the state space of the whole network. He discovered
the existence of a phase transition in an RBN of size N depending on the value of
the parameter K. For K > 2 there are around N/e possible cycles whose length
scales exponentially with N , however, for K = 2 both the number and length
of the limit cycles is only

√
N . Kauffman proposed to identify the number of

attractors of a gene regulatory network with the number of possible cell types,
and noted that the number of cell types seems to increase approximately with
the square root of the number of genes per cell, suggesting that gene regulatory
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networks are in the ordered regime, or on the edge between order and chaos. The
RBN models spawned a lot of research in the physics literature, see e.g. [6–9].

While Kauffman proposed a dynamic view on randomly connected gene reg-
ulatory networks, René Thomas developed a detailed logical description of the
mechanisms governing transcriptional regulation, including the effects of DNA
domains such as promoters, initiators, terminators, and the concepts of genetic
dominance and recessivity [10]. This formalism was later refined to include mul-
tilevel variables and used to study feedback loops, i.e. circular chains of interac-
tion. These loops can be classified into two categories based on the number of
negative (inhibitory) interactions in the loop: if this number is even, the loop is
positive, and if the number of negative interactions is odd, the loop is a nega-
tive feedback loop. Thomas found that a positive feedback loop is a necessary
condition for the existence of multiple steady states, while a negative feedback
loop with two or more elements is a necessary condition for stable limit cycles
[11]. Biologically this means that cell differentiation is based on positive feedback
loops, and homeostasis (stability to small perturbations) is based on negative
feedback loops. The logical framework introduced by René Thomas was success-
fully applied to various gene regulatory networks playing a role in the flower
morphogenesis of the wall cress Arabidopsis thaliana [12] and the development
of the fruit fly Drosophila melanogaster [13,14].

1.4 Current Models

Broadly speaking, the modeling approaches to gene regulatory networks can be
divided into two main groups. In the ‘discrete-state’ approach each network node
(mRNA or protein) is assumed to have a small number of discrete states and the
regulatory interactions between nodes are described by logical functions similar
to those used in programming. Typically time is also quantized, and the network
model that describes how gene products interact to determine the state at the
next time gives rise to a discrete dynamical system [12–18].

A more detailed level of description is used in the ‘continuous-state’ ap-
proach, in which the levels of mRNAs and proteins are assumed to be contin-
uous functions of time, and their evolution is modeled by differential equations
with mass-action kinetics or other rate laws for the production and decay of all
components [19–21]. In order to compare with usually ON/OFF type experi-
mental gene expression profiles, the continuous concentrations are transformed
into binary variables using thresholds.

In this paper I shall focus on a recent model of the segment polarity genes
developed in collaboration with Hans Othmer [18]. In this model we concentrate
on the products (mRNAs, proteins) of segment polarity genes. We reconstruct
the network of interaction between these components from experimental data,
and assume that these interactions can be expressed as Boolean functions. We
find that the dynamic behavior of this model always leads to steady states, and
these steady states are in very good agreement with the experimental data on
the gene expression pattern of wild type and mutant Drosophila embryos. In
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addition, the model leads to insights into the functioning of this network, the
most important being that the network topology is a main source of robustness.

2 The Segment Polarity Gene Network

The genes involved in embryonic pattern formation in the fruit fly Drosophila
melanogaster, as well as the majority of the interactions between them, are
known (for recent reviews see [22–24]). As in other arthropods, the body of
the fruit fly is composed of segments, and determination of the adult cell types
in these segments is controlled by about 40 genes organized in a hierarchical
cascade of gene families [25]. These gene families are expressed in consecutive
stages of embryonic development and have a spatial expression pattern that is
successively more precisely-defined (see Fig. 2). The genes at one step initiate or

Fig. 2. The segmentation of the fruit fly embryo is governed by a hierarchy of gene
families, starting from maternal genes. Each of these genes encode for transcription
factors, and are responsible for the initiation of the genes in the next family. While
the genes in the first three steps are transient, the segment polarity genes maintain a
stable pattern for three hours. Reproduced with permission from [23].



464 R. Albert

modulate the expression of those involved in the next step of the cascade. While
most of these genes act only transiently, the segment polarity genes are expressed
throughout the life of the fly, and their periodic spatial pattern is maintained
for at least 3 hours of embryonic development.

The best characterized segment polarity genes include engrailed (en), wingless
(wg), hedgehog (hh), patched (ptc), cubitus interruptus (ci), smoothened (smo)
and sloppy paired (slp)1. The segment polarity genes encode for diverse pro-
teins including the transcription factors Engrailed (EN), Sloppy Paired (SLP),
and Cubitus Interruptus (CI), the secreted proteins Wingless (WG) and Hedge-
hog (HH), and the transmembrane proteins Patched (PTC) and Smoothened
(SMO)2.

2.1 Wild Type Patterns of the Segment Polarity Genes

The segment polarity genes are activated by the pair-rule genes at about 3 hours
after fertilization. The initial state of the segment polarity genes includes two-
cell-wide SLP stripes followed by two-cell-wide stripes not expressing SLP [26],
single-cell-wide wg, en and hh stripes followed by three cells not expressing
them, and three-cell-wide stripes for ci and ptc [2]. This pattern is maintained
almost unmodified for three hours, during which time the initially homogeneous-
looking embryo is divided into 14 parasegments (the embryonic counterparts of
the adult segments) by regularly - distributed furrows. The position of these
furrows coincides with the space between the wg and en -expressing cells, thus
the periodicity of the gene expression drives the future external appearance of the
embryo [25]. The cells in a parasegment are counted from anterior (toward the
head) to posterior (toward the tail). According to this notation, wg is expressed
in the most posterior cell of each parasegment, and en in the most anterior cell.

The segment polarity genes refine and maintain their expression through the
network of intra- and intercellular regulatory interactions shown in Fig. 3. The
stable expression pattern of these genes (specifically the expression of wingless
and engrailed) defines and maintains the borders between different parasegments
and contributes to subsequent developmental processes, including the formation
of denticle patterns and of appendage primordia [2,25]. Homologs of the segment
polarity genes have been identified in vertebrates, including humans, which sug-
gests strong evolutionary conservation of these genes.

The pair-rule gene product SLP activates wg transcription and represses en
transcription. The WG protein is secreted from the cells that synthesize it [25,
27] and initiates a signaling cascade leading to the transcription of en [28]. EN
promotes the transcription of the hh gene [29] and represses the transcription
of ci [30] and possibly ptc [31,32]. The HH protein is also secreted, and binds
to the HH receptor PTC on a neighboring cell [22]. The intracellular domain
1 Many of these genes were named for the phenotypic changes their mutations cause,

e.g. a wingless mutant fruit fly does not have wings.
2 These notations follow the convention that names of genes and mRNAs are italicized,

while names of proteins are capitalized.



Boolean Modeling of Genetic Regulatory Networks 465

Fig. 3. The network of interactions between the segment polarity genes. The shape of
the nodes indicates whether the corresponding substances are mRNAs (ellipses), pro-
teins (rectangles) or protein complexes (octagons). The edges of the network signify
either biochemical reactions (e.g. translation) or regulatory interactions (e.g. transcrip-
tional activation). The edges are distinguished by their signatures, i.e. whether they
are activating (→) or inhibiting (� ). Terminating arrows (→) indicate translation,
post-translational modifications (in the case of CI), transcriptional activation or the
promotion of a post-translational modification reaction (e.g., SMO determining the ac-
tivation of CI). Terminating segments (� ) indicate transcriptional inhibition or in the
case of SMO, the inhibition of the post-translational modification reaction CI→CIR.

of PTC forms a complex with SMO [33] in which SMO is inactivated by a
post-translational conformation change [34]. Binding of HH to PTC removes the
inhibition of SMO, and activates a pathway that results in the modification of
CI [34]. The CI protein can be converted into one of two transcription factors,
depending on the activity of SMO. When SMO is inactive, CI is cleaved to form
CIR, a transcriptional repressor that represses wg, ptc [35] and hh transcription
[36,37]. When SMO is active, CI is converted to a transcriptional activator, CIA,
that promotes the transcription of wg and ptc [35,37–39].

3 Description of the Model

In the model, each mRNA or protein is represented by a node of a network,
and the interactions between them are encoded as directed edges (see Fig. 3).
The state of each node is 1 or 0, according as the corresponding substance is
present or not. The states of the nodes can change in time. We choose a time
interval that is larger or equal to the duration of all transcription and translation
processes, and we use this interval as the length of a unit timestep. The next
state of node i is determined by a Boolean function of its state and the states of
those nodes that that have edges incident on it.
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3.1 Updating Rules

The functions determining the state of each node are constructed from the inter-
actions between nodes displayed in Fig. 3 according to the following rules (see
also Fig. 4)

(i) mRNAs/proteins are synthesized in one timestep if their transcriptional
activators/mRNAs are present;

(ii) the effect of transcriptional activators and inhibitors is never additive,
but rather, inhibitors are dominant;

(iii) mRNAs decay in one timestep if not transcribed;
(iv) transcription factors and proteins undergoing post-translational modifi-

cation decay in one timestep if their mRNA is not present.
For example, EN is translated from en, and therefore the state of EN at time

t+1, EN t+1 = 1 if ent = 1. Since EN is a transcription factor, it is assumed that
its expression will decay sufficiently rapidly that if ent = 0, then EN t+1 = 0.
These two assumptions mean that

EN t+1 = ent. (1)

Table 1 gives an overview of the Boolean functions for each node. In each case,
subscripts signify spatial position (i.e. cell number) and superscripts signify
time3.

Fig. 4. Assumptions for the kinetics of the interactions. We assume that the timescale
for turning ON or OFF is the same. Transcription requires the presence of activators
and the absence of inhibitors; translation requires the presence of the mRNA.

3.2 Representing the State of the System

Expression of the segment polarity gene occurs in stripes that encircle the em-
bryo, and therefore we treated the two-dimensional pattern as one-dimensional.
We considered a line of 12 cells corresponding to three parasegment primor-
dia (i.e. the spatial regions that will become the parasegments), and imposed
3 In coding these rules we have used an equivalent description of a function giving the

output of every possible combination of inputs.
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Table 1. The Boolean functions used in the model. The functions are based on the
known interactions between mRNAs and proteins shown in Fig. 3, and on the temporal
assumptions listed above. In general the updating rule gives the expression of a node
at time t + 1 as a function of the expression of its effector nodes at time t. However,
there are three exceptions: we assume that the expression of SLP does not change, and
that the activation of SMO and the binding of PTC to HH are instantaneous.

Node Boolean updating function

SLPi SLP t+1
i = SLP t

i =
{

0 if i%4 = 1 or i%4 = 2
1 if i%4 = 3 or i%4 = 0

wgi wgt+1
i = (CIAt

i and SLP t
i and not CIRt

i)
or [wgt

i and (CIAt
i or SLP t

i ) and not CIRt
i]

WGi WGt+1
i = wgt

i

eni ent+1
i = (WGt

i−1 or WGt
i+1) and not SLP t

i

ENi EN t+1
i = ent

i

hhi hht+1
i = EN t

i and not CIRt
i

HHi HHt+1
i = hht

i

ptci ptct+1
i = CIAt

i and not EN t
i and not CIRt

i

PTCi PTCt+1
i = ptct

i or (PTCt
i and not HHt

i−1 and not HHt
i+1)

PHi PHt
i = PTCt

i and (HHt
i−1 or HHt

i+1)
SMOi SMOt

i = not PTCt
i or HHt

i−1 or HHt
i+1

cii cit+1
i = not EN t

i

CIi CIt+1
i = citi

CIAi CIAt+1
i = CIt

i and (SMOt
i or hht

i−1 or hht
i+1)

CIRi CIRt+1
i = CIt

i and not SMOt
i and not hht

i±1

periodic boundary conditions on the ends. We used four cells per parasegment
primordium because when expression of the segment polarity genes begins, a
given gene is expressed in every fourth cell. The state of the system includes a
12-cell wide 1-dimensional periodic pattern for each node in the network which
we represented as a series of black/gray boxes corresponding to cells in which
the given node is ON/OFF (see Fig. 5). To make the periodicity of the pattern
clear, we separated the patterns corresponding to distinct parasegments by short
white spaces.

4 Modeling the Wild Type Segment Polarity Genes

The first step in validating the model is testing whether it captures the wild
type behavior of the system. Therefore we started from the known initial pattern
of the segment polarity genes and updated their states according to the rules
presented on Table 1, checking whether they become stationary.

The initial state of each parasegment primordium includes SLP present in
the last (posterior) two cells, wg present in the last cell, en and hh expressed
in the first (anterior) cell, and ci and ptc expressed in the posterior three cells
[25,26,29,31,32]. Since the proteins are translated after the mRNAs are tran-
scribed, we assumed that the proteins are not expressed in the initial state. The
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Fig. 5. Because the expression pattern of the segment polarity genes is symmetrical,
we represent it with a one-dimensional pattern corresponding to the anterior-posterior
axis. We identify the state of each node in the network with a periodic succession of
black/ gray squares corresponding to cells that express/do not express the given node.
Each segment of four cells corresponds to a parasegment primordium.

en
EN

WG

hh
HH
ptc
PTC
PH

wg

(b)(a)CIR
CIA
CI
ci
SMO

Fig. 6. Wild-type expression patterns of the segment polarity genes. Here and hereafter
left corresponds to anterior and right to posterior in each parasegment. Horizontal rows
correspond to the pattern of individual nodes - specified at the left side of the row - over
two full and two partial parasegments. Each parasegment is assumed to be four cells
wide. A black (gray) box denotes a node that is ON (OFF). (a) The experimentally-
observed initial state. en, wg and hh are expressed in every fourth cell, while the broad
ptc and ci stripes are complementary to en. (b) The steady state given by the model
when initialized with the pattern in (a). This pattern is in excellent agreement with
the observed gene expression patterns. After [18].

one-dimensional representation of the mRNA and protein patterns is shown in
Fig. 6a.

We iterated the dynamical system defined by the rules in Table 1 starting
from the initial state described above. We found that after only 6 time steps,
the expression pattern stabilizes in a time-invariant spatial pattern (see Fig. 6b)
that coincides with the experimentally observed stable expression of the segment
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polarity genes. Indeed, wg and WG are expressed in the most posterior cell of
each parasegment [40], while en, EN, hh and HH are expressed in the most
anterior cell of each parasegment [29,40], ptc is expressed in two cells, one on
each side of the en-expressing cells [25,31]. SMO is present in a broad region
ranging from the wg-expressing to the en-expressing cells [41]. ci is expressed
almost ubiquitously, with the exception of the cells expressing en [30,38]. CIA
is expressed in the neighbors of the HH-expressing cells, while CIR is expressed
far from the HH-expressing cells [35].

Thus the model [18] demonstrates that the interaction between the segment
polarity genes is able to maintain their expression after initialization. The success
in reproducing the stable expression pattern of these genes is a strong indication
that the kinetic details of the interactions do not matter, just their signature
and the regulatory network they form. This conclusion is in agreement with the
results of the continuous-state model of von Dassow et al. [20].

5 The Functional Topology
of the Segment Polarity Network

The success of our model demonstrates that the topology of the regulatory net-
work has a determining role in its dynamics. Nevertheless, knowledge of the
topology alone is not enough to determine what will happen in the network.
Moreover, the presence of dual interaction signatures precludes us from using
standard graph theoretical tools to analyze this network.

To obtain a better insight into the connection between topology and dynam-
ics, we proposed the construction of an expanded graph that reflects the function
of the network. The first step of this expansion is adding complementary pseudo-
nodes corresponding to every node whose negated state enters the Boolean rules
on Table 1. The second step is to introduce composite pseudo-nodes for nodes
whose states are terms of a conjunction in these rules (see Table 2). Consider
the transcription of the hh gene. Figure 3 shows that hh has two incoming edges,
one from EN and one from CIR, and Table 1 shows that transcription of the
hh gene requires both the presence of the EN protein and the absence of the
CIR protein. We introduce complementary pseudo-node, CIR, that is expressed
whenever CIR is not, and connect it to CIR with a symmetrical edge. Then we
add the composite pseudo-node ECR, and we draw two directed edges starting
from EN and CIR and ending in ECR, to represent the dependence of ECR on
the expression of EN and CIR (see Fig. 7). Now hh receives inputs only from
ECR.

Figure 8 shows the nodes and edges corresponding to the mRNAs and pro-
teins in the second cell of the parasegment together with the pseudo-nodes these
mRNAs and proteins interact with, both cell-autonomously, and in the neighbor-
ing cells. Although the introduction of the pseudo-nodes increases the number of
nodes in the network, it eliminates the distinction between edges based on their
signatures; all directed edges in Fig. 8 now signify activation. However, there are
differences in the way multiple activating edges are taken into account: multiple
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Fig. 7. Illustration of the network expansion process used to construct the functional
topology. To express the logical rule governing the transcription of hh graphically, we
introduce the complementary node CIR and the composite node ECR. The expanded
network contains real nodes (filled circles) and pseudo-nodes (open circles), an inter-
dependence relation between CIR and CIR (dotted line), edges corresponding to the
activation of ECR (dash-dotted lines) and a single edge expressing the activation of hh
transcription. After [18].

Fig. 8. Functional topology of the network affecting the second cell of the parasegment.
Pseudo-nodes with multiple indexes correspond to intercellular interactions and either
receive some of their inputs from the neighboring cells, or contribute to the expression
of the nodes in the neighboring cells (not shown). Symmetrical edges between nodes
and their complementaries are drawn with dotted lines, double arrows denote a pair
of oppositely directed edges. The colored edges illustrate two antagonistic activating
clusters starting from en (purple) and EN (red).
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Table 2. Definition of the symbols for pseudo-nodes used in Fig. 8. The state of each
composite node is determined from the logical function giving its relation to the state
of its “parent” nodes.

Symbol of pseudo-node Relation to parent node(s)

Complementary nodes
EN not EN
hh not hh

HH not HH
PTC not PTC
SLP not SLP
SMO not SMO

Composite nodes corresponding to a single cell
(CAECR)2 CIA2 and EN2 and CIR2

(CASCR)2 CIA2 and SLP2 and CIR2

(CSM)2 CI2 and SMO2

(ECR)2 EN2 and CIR2

(wCACR)2 wg2 and CIA2 and CIR2

(wSCR)2 wg2 and SLP2 and CIR2

Composite nodes corresponding to intercellular interactions
Cihj CIi and hhj

CiSMihjhk CIi and SMOi and hhj and hhk

PiHjHk PTCi and HHj and HHk

PiHj PTCi and HHj

WiSj WGi and SLPj

edges ending in composite pseudo-nodes are added by the operator “and”, while
multiple edges ending in real nodes are cumulated by the operator “or”.

Figure 8 illustrates the heterogeneous functional topology of the segment
polarity network. The majority of nodes have few edges, but there are key nodes
with a large number of incoming or outgoing edges. For example, CIR has 5
outgoing edges, while HH has 4. The important role of HH in the network is
reflected in the fact that it affects the future expression of 4 other proteins
(CIA, CIR, PTC and PH) in the neighboring cells, for a total of 8 nodes. Other
nodes such as CIA have several incoming edges, indicating that they can be
activated in many ways. A single node, SLP, has only outgoing edges because it
is constitutively present; all others have both incoming and outgoing edges (the
apparent exceptions interact with nodes in the neighboring cells).

The functional network of Fig. 8 gives insight into the time-evolution of the
expression of the segment polarity genes. For example, we can determine the
cluster of nodes that can be activated by the expression of a given node (see
colored nodes in Fig. 8). The absence of EN (or conversely the presence of EN)
gives the largest activated cluster, containing ci, CI, CIA, ptc, PTC, PH, wg, and
WG. A separate activated cluster starts with the presence of en, and contains
EN, hh and HH. These activating clusters indicate that the cells expressing en
and hh never express wg, ptc or ci. This separation into anterior and posterior
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compartments expressing different genes is well-known, in fact, it is the basis for
calling these genes “segment polarity genes” [2].

While the majority of the activating effects propagate outside the cell, there
are three cases in which an activation can return to its source. In other words,
three short positive feedback loops exist in the network of Fig. 8. The first
two loops connect wg2 with (wCACR)2 or (wSCR)2 and the third connects
PTC2 with P2H1H3. These loops ensure the maintenance of wg and PTC if all
the conditions for the expression of the pseudo-node in the cycle are met. The
successful activation of the wg cycle can induce the stable expression of en and hh
in those neighboring cells where neither SLP nor CIR is expressed, and stable
expression of PTC leads to stable CIR expression two cells removed from en
expression.

6 Gene Mutations

An important method for inferring gene interactions experimentally is to silence
selected genes by mutations. These null mutant genes are not able to synthesize
protein, and if that protein is a transcription factor, the effects of the mutation
propagate through the system (see Fig. 9). Our model is able to simulate the
effect of null mutations by setting the state of the transcript to OFF and not
updating it during the evolution of the system.

Our results indicate that if any of en, wg or hh are blocked, the steady state
is a pattern with no en, wg, ptc or hh, as in Fig. 10a. We can see from Fig. 8
that each of these mutations disrupts intercellular signaling, causing ubiquitous
expression of CIR, which in turn leads to ubiquitous repression of transcription.
This result is in excellent agreement with all experimental observations regarding
en, wg and hh mutant embryos [29,31,42–44].

If the ptc gene is blocked, we obtain a pattern with broad wg, en and hh
stripes ( see Fig. 10b). Indeed, the network in Fig. 8 shows that if ptc is de-
activated, PTC will be ubiquitous, causing all CI to be transformed into CIA,
which leads to two-cells-wide wg and en/hh expression. This pattern agrees with
the experimental results on ptc mutants [29,43–45]. Moreover, our results are in
agreement with all experimental observations of double mutants as well [29,40,
42,46].

Fig. 9. Gene mutations that disrupt transcription factors propagate through the sys-
tem, affecting multiple nodes.
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Fig. 10. Segment polarity gene expression patterns predicted for gene mutations. (a)
Pattern with no segmentation. This pattern arises if any of wg, en or hh is kept OFF
in the model and is independent of the initial state of the other genes. (b) Broad
expression pattern. The stripes of en, wg and hh are two-cells-wide, while the ci stripe
narrows and CIR is not expressed. This state arises when ptc is kept OFF, regardless
of the initial state of other genes. (c) Almost normal pattern obtained for ci mutants
and wild type initial conditions.

If all the other genes are initiated normally, we find that the effect of a ci
deletion does not affect the en, wg and hh patterns (see Fig. 10c). Indeed, Fig. 8
shows that the deactivation of ci leads to the disappearance of CIA and CIR,
but wild-type wg can still be maintained by SLP[39,44]. In conclusion, the model
is in agreement with every observed gene pattern in mutants (see Fig. 11) and
provides predictions for genes whose expression was not studied experimentally.

7 Determination of the Steady States
and Their Domains of Attraction

The fact that the model reproduces the results of numerous experiments re-
markably well suggests that the structure of the model is essentially correct, and
warrants exploration of problems that have not been studied experimentally.
For example, we can determine the complete set of stable steady state patterns
of segment polarity gene expression, and estimate the domain of attraction of
these states. The former can be done analytically by noting that these are fixed
points of the discrete dynamical system, and so xt+1

i = xti, where x corresponds
to any node in the network. Thus a steady state is the solution of the system of
equations obtained from Table 1 by simply removing the time indices (see [18]).
We obtain 10 solutions that correspond to four distinct patterns (see Fig. 12)
and their slight variations.

The first steady state is the pattern with no segmentation first presented
in Fig. 10a. The second corresponds to the wild-type pattern first shown in
Fig. 6b. The third steady state has two-cells-wide en and wg stripes like the ptc
mutant (see Fig. 12c). In the fourth distinct steady state wg is expressed in the
anterior neighbor of its wild-type position, while the en/hh stripe is displaced
posteriorly (see Fig. 12d). This expression pattern corresponds to an embryo
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Fig. 11. Comparison between the experimental results (embryo pictures showing the
expression pattern of en and hh, after [29]) and predictions of the model (black and gray
patterns) for two gene mutations. The model indicates that ci mutation can preserve
the pattern of en and hh, while ptc mutation doubles their expression, in agreement
with experiments.

with no parasegmental grooves, since the end of the wg stripe does not meet the
beginning of the en stripe.

While each of the steady states can be obtained starting from suitable nearby
states, the number of initial conditions leading to a chosen stable pattern, i.e., its
domain of attraction, can be very different. Consider first the number of initial
states that lead to the wild-type steady state. If we fix all nodes but one in their
wild-type pattern, there are 24 = 16 distinct initial patterns corresponding to
the four cells of the parasegment. We do this for each of the 14 variable nodes
in turn (we do not change the expression of SLP) and find that the number of
initial patterns leading to the wild-type steady state is 3 for wg or WG variation,
4 for en, EN, hh or HH variation, 8 for ptc, PTC, CI or CIA variation, and 16
for PH, SMO, ci or CIR variation. When the initial pattern of all 14 nodes can
vary, there are 32 · 44 · 84 · 164 ∼ 6× 1011 prepatterns that lead to the wild type
steady state, which is a fraction of 8× 10−6 of the total number of initial states
Nst = 1614.

We find that the network is very robust with respect to missing initial expres-
sion of nodes. We have determined that the minimal prepatterning that leads to
wild-type stable expression is as follows.

• wg is wild type,
• en and hh are not expressed,
• ptc is expressed in the third cell of the parasegment primordium,
• ci and the proteins are not expressed.
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Fig. 12. Various stable patterns of the segment polarity genes. (a) Steady state with
no segmentation. (b) Wild-type type expression pattern. (c) Steady state with broad
en, wg and hh domains. (d) Ectopic pattern with displaced wg, en and hh stripes.

In summary, it is enough to initiate the expression of two genes in two cells per
parasegment primordium, and the interactions between the segment polarity
genes will initiate the others. This result suggests a remarkable error-correcting
ability for the segment polarity gene network.

Note that the minimal prepattern contains the wild-type expression of wg.
If wg is not expressed initially we find that the final pattern is like Fig. 12a,
regardless of the initial pattern of the other nodes. Consequently, a fraction of
at least 1/16th of the initial states leads to the pattern of Fig. 12a. This finding
suggests that wg has a special role in the functioning of the segment polarity
network, and has to be activated at a specific time and specific cells in order to
obtain wild-type gene expression.

In the other limit, broader than wild-type initial expression of any node
except PH, SMO, ci and CIR leads to the pattern with broad stripes as in
Fig. 12c. This pattern is obtained in the vast majority of prepatterns, comprising
about 90% of the total number of initial state and its features were frequently
observed in overexpression experiments [43,44,47].

The minimal prepattern needed for the ectopic pattern with displaced wg
and en stripes (Fig. 10c) is wg expression in the third cell of the parasegment
primordium (the same as its steady pattern), and ptc expression in the last cell of
the parasegment primordium, where the wild-type stripe of wg would normally
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be. Note that this minimal initial condition is simply a shifted version of the
minimal condition for the wild-type steady state. In practice the simultaneous
ectopic initiation of several nodes is very improbable, and indeed, this steady
state has never been observed.

In addition to steady state analysis we have performed a systematic analy-
sis of the dynamics of the network when the initial expression of genes differs
from the wild-type initial condition. In principle the attractor for some initial
conditions could be periodic in time, but we have found that the only stable
attractors are steady states. Since the purpose of the segment polarity network
is to stabilize and maintain the parasegment borders, this result is biologically
realistic.

8 Possible Changes in the Assumptions

Our goal in constructing this model was to base it on the topology of the regu-
latory interactions and have as few additional parameters as possible. However,
there remain a few assumptions that might not be necessary or, on the contrary,
could reveal essential constraints on the network.

8.1 Equal Timescale for Synthesis and Decay

We assumed that the expression of mRNAs/proteins decays in one time step
if their transcriptional activators/mRNAs are switched off. This conjecture is
probably too severe, as the decay time of proteins is usually longer than the
time their synthesis takes. Therefore we studied a variant of the model in which
the expression of a protein is maintained for at least two steps [18]. We find that
this variant leads to exactly the same steady states as the original model, and
these states have approximately the same basins of attraction4. The two-step
model reaches the wild-type steady state shown in Fig. 6b if it is started from
the initial pattern of Fig. 6a, and leads to the same states for gene mutations. The
only change is in the intermediate states visited en route to the final state: both
the wild-type and the broad type pattern stabilizes on average 30% faster using
the two-step assumption. On the other hand, the pattern with no segmentation
is reached at a slightly lower rate than in the original model. In conclusion,
the two-step assumption provides a more realistic modeling of the decay of the
proteins without changing the conclusions of the model.

8.2 Assumptions for WG and PTC

The model contains two exceptions to the one-step decay rule through the as-
sumptions of persistence of existent wg and PTC expression. The stability of
these nodes has a major role in stabilizing the expression of the segment po-
larity genes, reflected in the existence of the cycles in the functional topology
4 Note that in this case limit cycles are possible.
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of the network (Fig. 8) and in the fact that the steady states are completely
determined by the pattern of wg and PTC. It is therefore important to check
what happens if wg and PTC decay in one step as other mRNAs and proteins.

If we assume that

wgt+1
i = CIAti and SLP ti and not CIRti, (2)

it is still possible to arrive at the wild-type steady state, but only for much more
restricted initial states. Furthermore, the resilience of the network to mutations
in ci is destroyed, and all initial states lead to the steady state with no segmenta-
tion. Since it is observed experimentally that ci null mutants still display almost
normal segmentation [44], we can conclude that the stability of wg is required
for the functioning of the segment polarity genes. This suggests a special role for
SLP as the main activator of wg, and underlies the need for its stability.

If we do not assume the maintenance of initial PTC expression, the pattern
of PTC will follow that of its transcript and split into two stripes. This will
cause the complete disappearance of CIR and the only steady state will be the
pattern with broad stripes as in Fig. 10b. Thus the persistence of PTC is a major
requirement for the function of the segment polarity network, and suggests that
the protein has special structural properties.

8.3 Four-Cell-Wide Parasegments

During the three hours of stable segment polarity gene patterning the paraseg-
ment is enlarged due to two rounds of divisions [2]. While the wg stripe remains
a single cell wide, the en stripe widens to three cells. The maintaining of this
en requires WG transport, and, indeed, wingless protein is seen to diffuse over a
distance of 2-3 cell diameters [48]. In order to determine if our model is able to
describe the segment polarity gene patterns in later stages, we applied it to the
transition between a four- and eight-cell-wide parasegment. We started with the
wild-type pattern of Fig. 6a and assumed that each cell divides into two iden-
tical cells, with the same genes expressed in each of the two. We also assumed
that WG and HH can be transported through the nearest neighbors of the cells
expressing their mRNAs. The model leads to the steady state represented in
Fig. 13, with a single cell wide wg stripe, three cell wide en and hh stripes, and
two ptc stripes flanking the en domain. This steady state agrees perfectly with
the wild-type pattern observed in 8hr old embryos [25,30,31,41,38].

8.4 Stable SLP

Throughout our analysis we assumed that the expression of SLP does not change.
To test whether this assumption is necessary, we have studied the effects of
inactivated and overexpressed SLP. We obtain seven final states for inactivated
SLP, but none of them corresponds to the wild-type pattern. The closest state,
obtained when we start from wild-type initial conditions, has a wild-type wg and
ptc pattern, but en and hh are expressed on both sides of the wg stripe and CIR
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wg
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EN
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HH

CIR
CIA
CI
ci

ptc
PTC
PH
SMO

Fig. 13. Stable expression pattern of the segment polarity genes after a round of cell
division, as obtained from our model. We assume that at this stage WG and HH can
be transported through the neighboring cells. This pattern is in good agreement with
experimental observations of 8hr old embryos. After [18].

wg
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en
EN
hh
HH

CIR
CIA
CI
ci

ptc
PTC
PH
SMO

Fig. 14. The pattern obtained from our model when we start from wild-type initial
conditions, but SLP is not functional. Note that en is expressed on both sides of the
wg stripe. After [18].

is not absent (Fig. 14). At this point this state is a theoretical prediction that
can be verified by conditional SLP mutants (i.e., mutants that have normal pair-
rule activity, but no segment polarity activity). We also find that ubiquitously
expressed SLP leads to the state with no segmentation presented in Fig. 10b. This
finding is in agreement with experimental results [26]. Based on these results,
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and the important role of SLP in maintaining wg transcription, we conclude that
the SLP protein plays a vital role in this network.

9 Conclusions

The model demonstrates that the topology of the regulatory network plays a
determining role in the dynamics and the stability of the segment polarity genes.
The success in reproducing wild type and mutant gene patterns indicates that
the kinetic details of the interactions do not matter, as long as their net effect
is preserved. Our simulations also suggest a remarkable robustness and error
correcting ability of the segment polarity gene network. We found that a large
fraction of initiation delays can be rescued, and the network can compensate
even for some gene mutations . The model also gives numerous predictions that
can be tested experimentally. First, we concluded that the wingless gene plays a
key role in the system, and it is imperative that it be initiated at the right time
in the right pattern. However, non-initiation of engrailed and hedgehog can be
rescued by the activity of the network. Experiments with conditional mutants
defective in initiation could verify these predictions. Second, we found that the
state of the segment polarity genes can evolve into a pattern with displaced
stripes if initiated in a certain way. While this ectopic initiation is difficult, it
should be possible. Finally, we concluded that the stable expression of SLP is a
crucial requirement; this could be tested by the isolation of the segment polarity-
and pair-rule roles of SLP.

The two-step model represents a step toward modeling the transition from
the initial state to the final steady state of the segment polarity network. A
more realistic model would assume different time intervals (expressed in number
of steps) for the decay for mRNAs and proteins. While this extension would
involve unknown parameters, the condition of reaching the same steady states
as the original model would provide constraints on the variability of the decay
rates. Another direction where the model could be extended is to consider a two-
dimensional array of cells. It is known experimentally that the stripes of segment
polarity genes are not initiated as straight lines, but have jagged borders [2].
During the functioning of the segment polarity network these stripes straighten,
and the parasegment borders become sharp. A two-dimensional simulation of
our model could lead to important insights into this process.

The model presented here is part of a larger family of models using a logical
approach to gene regulatory networks [13–17,50]. As illustrated by these mod-
els, this approach enables the integration of qualitative observations on gene
interactions into a coherent picture, while adding a minimum of additional ki-
netic hypotheses. The analysis of a Boolean model is more tractable than that
for a model based on differential equations, which inevitably has numerous un-
known parameters, and a Boolean model facilitates a more systematic study of
the possible steady states and their basins of attraction5. We envision realistic
5 Note that Boolean logic can be extended to so-called polynomial logic applicable to

multi-level variables, see [49].
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topology-based Boolean modeling as an important first step in understanding
the interplay between the topology and dynamics of gene regulatory networks
and testing the completeness of available topological information. While the seg-
ment polarity gene network was successfully modeled by a simple synchronous
binary Boolean model, other networks require more detailed models incorporat-
ing asynchronous updating and/or multi-level variables [13,14]. Of course there
are undoubtedly systems, such as metabolic networks, for which a Boolean ap-
proach might not be an appropriate first level of analysis.
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Abstract. The mammalian brain is an extraordinary object: its networks give rise
to our conscious experiences as well as to the generation of adaptive behavior for the
organism within its environment. Progress in understanding the structure, dynamics
and function of the brain faces many challenges. Biological neural networks change over
time, their detailed structure is difficult to elucidate, and they are highly heterogeneous
both in their neuronal units and synaptic connections. In facing these challenges, graph-
theoretic and information-theoretic approaches have yielded a number of useful insights
and promise many more.

1 Introduction

The human cerebral cortex contains a network consisting of approximately 30
billion neurons and about 1x1015 connections. The state of each neuron varies in
complex ways over time, and neurons are diverse in their intrinsic properties and
in the number of connections they make. Moreover, the structure of the brain
continuously changes as a result of ongoing interactions among neural substrates,
neural activity, and the embodied action of the organism within an environment
[1–3].

The aim of this chapter is to describe some recent developments in under-
standing structural, dynamical and functional aspects of neural networks from
the perspective of network theory. We focus our analysis on vertebrate cortical
networks (the cortex is the heavily folded outer layer of the brain). Given this fo-
cus, our coverage is not intended to be comprehensive, and we present a mixture
of previous results and new modeling data.

The structure of a neural network is reflected by the set of synaptic connec-
tions among neurons at a given time. These synapses have different strengths
(weights) which may vary over time as a result of plasticity processes. Dynamics
here refers to the neural firing patterns that a neural network supports. This is
the level of effective connectivity in the brain [4], and there is now substantial
evidence that cognitive and perceptual states are closely related to dynamical
patterns of neural activity [5–7]. Finally, we use the term ‘function’ to refer to the
role of these firing patterns within the context of a larger system [8], in this case
the generation of adaptive behavior for the organism within its environment.

Structural and neuroanatomical analyses are most directly related to current
network theory. Representing neural networks as directed graphs allows the ap-
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plication of a broad range of analytical tools from graph theory and statistical
cluster analysis [9–14]. At present, much less is known about the detailed con-
nectivity of the vertebrate cortex in comparison to artificial networks such as the
internet (see, for example, [15]). However, the topology of biological neural net-
works can be described at many different spatial scales, and graph-theoretic anal-
ysis at the level of interconnected brain regions has revealed distinctive features
of structural organization including so-called ‘small-world’ characteristics [16].

Network structure is particularly important inasmuch as it provides a sub-
strate for dynamic processes [17,18]. Most dynamical data recorded from neural
tissue consist of sequences of discrete action potentials — or ‘spikes’ — with
varying inter-spike-intervals, and there is increasing evidence that precise spike
timing is significant for normal neural operations [19,20]. Statistical informa-
tion theory provides a very general means of characterizing these dynamics, and
while there is a growing literature concerning the measurement of the informa-
tion content of single neural spike trains [21–24], we focus here on the dynamics
generated by networks of neuronal elements. We describe several information-
theoretic measures appropriate for this task, including entropy, ‘integration’ and
‘neural complexity’ [25,14]. Theoretical models show that networks optimized to
generate each kind of dynamics possess distinctive structural motifs [14]. Of par-
ticular interest is neural complexity [25], which is maximized for networks that
show an even balance between dynamical segregation and dynamical integra-
tion. Networks that generate high complexity contain dense local clusters that
are linked by reciprocal bridges. Intriguingly, cortical connection matrices have
very similar structural properties, suggesting that they may be near-optimal for
generating complex dynamics [14].

To be useful, a network-theoretic approach to neuroscience must take func-
tion into account. Since biological neural networks are embodied in organisms
which are themselves embedded within environments, the most general function
of a biological neural network is to generate action for the organism that is
adaptive within the current environment. It has been suggested [14] that adap-
tation to rich sensory environments and motor demands may require complex
neural dynamics. In this chapter we describe results that support this hypothe-
sis, based on a model of target fixation by a simulated agent that is controlled
by an artificial neural network [26].

While neuroscience has its specific explanatory targets and sources of data,
the problem of understanding interactions among network structure, dynamics,
and function is a very general one. Some aspects of the analyses presented in this
chapter will prove useful for elucidating these interactions in network systems of
many different kinds.

2 Structure

The anatomical or structural connectivity of a neuronal system is determined
by the network of connections linking its elements at a given time. This net-
work can be described at a variety of spatial scales, from synaptic connections
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among individual neurons, to fiber bundles linking local neuronal groups, to the
massively parallel pathways connecting distributed areas of the brain.

In the vertebrate (and especially the human) cortex, global connectivity pat-
terns at the level of individual neurons remain largely unknown [27]. Most recent
analyses of brain connectivity have made use of datasets such as those describ-
ing connectivity at the level of segregated brain regions in the macaque monkey
visual cortex [28,29] and the cat cortex [30,31]. While these datasets have proven
very useful, they are far from complete. Recent efforts to combine results across
many anatomical studies are improving this situation and have resulted in the
development of online databases with increasingly detailed connectivity informa-
tion [32]. For example, as of December 5, 2003 the CoCoMac database (accessible
at www.cocomac.org) contained details of 33,850 connections among 6,466 dis-
tinct sites in the macaque brain [33]. Future analyses using this database, and
others like it, may reveal many presently unknown features of neuroanatomical
organization.

2.1 Graph Theoretic Analysis

Neural networks can be described as directed graphs (digraphs) GNK with N
vertices (nodes) and K edges. The connection matrix Cij(G) of G contains el-
ements cij holding the connection strength between node j (source) and node
i (target). If no information is available about relative connection strengths,
as is often the case, then Cij(G) is written as a binary matrix, with entries 1
(connection present) and 0 (connection not present). Paths within GNK refer to
any ordered sequence of distinct nodes linking a source j to a target i with the
condition that no node is visited more than once, unless i = j, in which case the
path is a cycle.

Given GNK and the corresponding Cij(G) matrix, many standard tools of
graph theory can be applied to yield insights into the structure of a neural
network system [9–14].

The average connectivity of a digraph is the total number of connections
present divided by the total number of connections possible. For the human
cerebral cortex, this value appears to be very small, perhaps as low as 9.7 x 10−7

[34]. However, most synapses in the brain are between neurons that share the
same local neighborhood, so that locally defined average connectivity values are
much higher. For example, Nicoll and Blakemore estimate that neurons located
within 300µm of each other in rat visual cortex are connected with a probability
of 0.09 [35]. Average connectivity also increases at larger spatial scales; at the
level of cortical areas, connection densities may be as high as 0.36 [28].

Average connectivity by itself does not give much insight into the structural
organization of the brain. More useful are local measures such as the ‘matching
index’ which gives the proportion of connections shared by two nodes i and j,
normalized by the total number of connections belonging to both nodes [36]. A
high matching index between two nodes suggests a possible functional overlap.
For example, primate cortical areas FST and MSTd have a matching index of
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0.71 [12], and electrophysiological studies indicate that cells in these areas do
indeed have similar response properties [37].1

Another useful local measure is the cluster index fclust, which is defined for a
node i as the number of connections present among i and its immediate neighbors
divided by the maximal number of connections possible among this subset [16].
The (global) cluster index for a graph G is the mean of fclust for all nodes.
A high global cluster index indicates a ‘cliquish’ graph in which neighboring
nodes connect mainly among each other. Since most synaptic connections are
made locally, neural networks may be expected to have high cluster indices, and
indeed the macaque visual cortex has a cluster index fclust = 0.57, much higher
than the value for a randomly connected network with equivalent N and K
(fclust � 0.36) [12].

The cluster index fclust is often measured in conjunction with the ‘charac-
teristic path length’ of a graph, lpath, which is a measure of the mean separation
between any two nodes [16]. Formally, lpath(G) is the global average of the dis-
tance matrix Dij(G) whose elements dij hold the shortest path between nodes
j and i. Highly clustered networks usually have high values for lpath, whereas
random networks have low fclust and low lpath. In a widely cited paper, Watts &
Strogatz [16] identified a class of networks which combine high clustering with
short characteristic path lengths; these ‘small-world’ networks consist mainly
of local connections with a small proportion of randomly rewired edges. Small-
world characteristics are present in networks of many different kinds [16,39],
and analysis of cortical connection matrices also reveals high cluster indices in
combination with comparatively short path lengths [14,12]; for example, the
macaque visual cortex has fclust = 0.57 (see above) and lpath = 1.64 (lpath for
an equivalent random network � 1.60).

‘Scale-free’ networks have the property that the probability P (k) that a node
connects to k other nodes follows a power law, i.e. P (k) = k−γ , where typically
2 < γ < 3. Such power-law degree distributions contrast with randomly con-
nected networks which have Poissonian distributions with a characteristic av-
erage degree [40]. As with small-world networks, scale-free characteristics have
been found in a wide variety of networks, including the internet, the world-wide
web, and biological systems such as metabolic reaction networks [41,42]. As yet,
however, no data have been found to indicate the existence of scale-free networks
in the brain [12], although of course this does not rule out their discovery in the
future.

It has been suggested that a distinctive feature of neurobiological structure
and dynamics is reentry ; the ongoing recurrent exchange of signals along mas-
sively parallel reciprocal pathways among neural areas [43–47]. The possibility
of reentrant activity in a network can be estimated to a first approximation by
the fraction of reciprocal connectivity among areas, i.e. the relative abundance

1 Areas FST (floor of the superior temporal sulcus) and MSTd (dorsomedial superior
temporal cortex) are visual areas whose cells show selective responses to the cor-
relations in visual input that result from movement through a visual environment
(optic flow) [38,37].
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of cycles of length two. This quantity, designated as frecip, is high for most
cortical connection matrices [14]. For example, the macaque visual cortex has
frecip = 0.77, a fraction much higher than the expected value of 0.3 for equivalent
random networks [28,12].

A more general measure of reentry is provided by the quantity pcyc(q), which
captures the relative abundance of cycles of length q in a network (note that
pcyc(2) is equivalent to frecip) [14]. Both macaque visual cortex and cat cortex
have values for pcyc(q), for cycles of lengths up to at least q = 5, that are
significantly above those obtained for equivalent random networks [14].

2.2 Optimal Wiring

None of the measures presented so far take into account the physical separations
among neurons. Yet biological neural networks exist within the three-dimensional
confines of the skull. Moreover, neural material is metabolically expensive, both
to develop and to sustain in operation. These considerations have led some re-
searchers to propose that neuroanatomical structure is arranged in such a way
as to minimize the total wiring length among neural structures [48–51].

While some evidence exists in support of these ideas from studies of inver-
tebrate nervous systems [49], analyses of cortical connection matrices are less
convincing. Both the macaque visual cortex and the cat cortex have minimal
wiring lengths that are significantly shorter than those of equivalent random net-
works; however there exist many other networks with equivalent N and K that
have even shorter wiring lengths [14]. In any case, it seems improbable that the
sole selection pressure during brain evolution was minimization of wiring length.
More likely, anatomical arrangements evolved primarily to support dynamical
activity patterns that contributed to the generation of adaptive behavior by the
organism, with metabolic and developmental constraints playing a secondary
role.

2.3 Statistical Analysis

Statistical techniques complement graph-theoretic analyses by detecting consis-
tent patterns in complex data sets, usually by some form of dimensionality re-
duction. A constellation of techniques is currently available; here we briefly men-
tion only one: non-metric multidimensional scaling (NMDS) [52,53,12]. NMDS
rearranges objects in a low dimensional space (usually 2D or 3D) so that the
rank-ordering of the original (high-dimensional) distances among them are best
preserved. Proximity in a NMDS diagram indicates that two nodes are strongly
interconnected and/or share a relatively large proportion of their connections.

Young et al. [54] applied NMDS to the connection matrix of the macaque
visual system. They found that the resulting 2D configuration showed a clear
separation between two distinct groups of nodes. This separation corresponds
to the commonly accepted distinction between ‘dorsal’ and ‘ventral’ streams of
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visual processing [55].2 Alternative methods, which give results that are largely
consistent with the NMDS analysis, are reviewed by Hilgetag et al. [56,12].

3 Dynamics

The networks of the brain support the exchange of signals among neurons. There
is now substantial evidence that the resulting activity patterns are closely re-
lated to our cognitive and perceptual states [5–7]. A central challenge for a
network-theoretic approach to neuroscience is to relate structural descriptions
to dynamical patterns of activity at different spatial and temporal scales. In this
section we focus on the application of statistical information theory as a means
of characterizing neural network dynamics [25,14].

3.1 Information-Theoretic Analysis

The dynamical – or effective – connectivity of a neuronal system consists of the
pattern of temporal correlations, or deviations from statistical independence,
in the activities of neuronal elements that are generated by their interactions
[4]. It has been suggested that cortical networks exhibit a balance between two
main principles of dynamical organization, segregation and integration [25,14,57,
58]. Cortical networks contain many kinds of specialized neuronal units that are
anatomically segregated from each other; for example, cells in different regions of
visual cortex are specialized to respond to color, orientation, motion and so forth
[59,60]. At the same time, in order to support globally coherent cognitive and
perceptual states, the activity of these segregated elements has to be integrated
across space and over time.

Global Dynamical Measures. A useful description of the effective connec-
tivity of a neural system is the joint probability distribution function of the
activities of its neuronal elements. Assuming that this function is Gaussian, this
is equivalent to the covariance matrix of the system. Importantly, the covariance
matrix captures the total effect of all (anatomical) connections within a system
on deviations from statistical independence of the activities of a pair of elements,
not just the effect of any direct anatomical connection linking them [61].

Covariance matrices can be numerically estimated by direct observation of
system activity over time. Alternatively, if linear dynamics are assumed, the
covariance matrix of a system X can be derived analytically from the anatomical
connectivity matrix Cij(X):

COV(X) = QT ∗ Q, Q = [1−Cij(X)]−1, (1)

where T indicates matrix transpose [25].
2 The dorsal visual stream is also called the ‘where’ stream and is usually associated

with object location, whereas the ventral stream - the ‘what’ stream - is usually
associated with object identification.
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Once the covariance matrix is obtained, a number of global dynamical mea-
sures can be calculated. Three such measures, which are based on the founda-
tions of statistical information theory, are entropy H(X), ‘integration’ I(X) and
‘neural complexity’ Cn(X) [25,14].

For a system X, the entropy H(X) measures the system’s overall degree of
statistical independence. Assuming stationarity, H(X) can be calculated using
the standard formula

H(X) = 0.5ln((2πe)N |COV(X)|), (2)

where COV(X) is the N x N covariance matrix of X, and |.| denotes the matrix
determinant [25,62].

The integration I(X) measures the system’s overall deviation from statistical
independence. All elements in a highly integrated neural system are tightly cou-
pled in their activity. With xi denoting the i’th element, I(X) can be calculated
using

I(X) =
N∑

i=1

H(xi)−H(X). (3)

Perhaps the most interesting global dynamical measure is neural complex-
ity Cn(X), which measures the extent to which a system balances dynamical
segregation and dynamical integration [25]. The component parts of a neurally
complex system are differentiated; however, as larger and larger subsets of ele-
ments are considered they become increasingly integrated (see Fig. 1). The term
‘complexity’ may be considered appropriate for such systems since they are in-
termediate between the two relatively simple extremes of disorder (maximal
statistical independence) and order (maximal statistical dependence).

The neural complexity Cn(X) of a system X is calculated by summing the av-
erage Mutual Information (MI) between subsets of different sizes, for all possible
bipartitions of the system:

Cn(X) =
nt/2∑

k=1

〈MI(Xk
j ; X−Xk

j )〉, (4)

where nt is the total number of ways of bipartitioning X, Xk
j is the j’th bipartition

of size k, and 〈.〉 is the average across index j. The MI between two subsets (A
and B) measures the uncertainty about A that is accounted for by the state of
B, and is defined as MI(A; B) = H(A) +H(B)−H(AB) [63] (see Fig. 1).

Another, closely related measure of complexity expresses the portion of en-
tropy that is accounted for by interactions among all the elements of a sys-
tem [58]:

C(X) = H(X)−
N∑

k=1

H(xi|X− xi). (5)
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S=1 S=N/2S=2

Fig. 1. Neural complexity is defined as the ensemble average MI between subsets of a
given size and their complement, summed over all subset sizes (adapted from Fig. 2 in
[64]). Small circles represent neuronal elements and bold arrows indicate MI between
subsets and the remainder of the system. Shown in the figure are a selection of subsets of
size 1 (S=1), size 2 (S=2), and size N/2 for system size N (S=N/2). A neurally complex
system is one in which small subsets of the system show high statistical independence,
but large subsets show low statistical independence.

This measure takes on high values if single elements are highly informative about
the system to which they belong, without being overly alike. It has the advantage
of being easier to compute than the first formulation Cn(X), and all results
described in this chapter use this formulation.

Dynamical Cluster Analysis. In Sect. 2.3 we described how statistical tech-
niques such as NMDS could be used to identify clusters of highly interconnected
nodes from high dimensional connectivity data. Cluster analysis can also per-
formed at the level of network dynamics, where a dynamical cluster corresponds
to a strongly interactive subset of elements. Note that dynamically identified
clusters need not correspond to structurally identified clusters, although in many
cases they may do so.

A dynamical cluster is characterized by a high level of statistical dependence
among its elements and, at the same time, a low level of statistical dependence
with elements outside the cluster. Clusters can be identified by calculating the
cluster index Cl(Xi

k), which is defined as follows [65]:

Cl(Xi
k) = I(Xi

k)/MI((Xi
k); X− (Xi

k)), (6)
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where Xi
k denotes the i’th subset of size k, I(Xi

k) indicates its integration, and
MI((Xi

k); X−(Xi
k)) denotes its mutual information with the rest of the system.

Note that Tononi et al. [65] describe this cluster index as a measure of func-
tional clustering rather than dynamical clustering. However, as we remarked
in the introduction, function here refers to the role of a particular pattern of
dynamics in the context of the behavior of the organism.

Graph Selection. To explore the relationship between network structure and
network dynamics, Sporns et al. [14] applied an evolutionary search procedure to
look for distinct anatomical motifs associated with different measures of effective
connectivity. This procedure uses a global dynamical measure as a fitness (or
cost) function, and it is implemented as follows. First, an initial population of U
random graphs is created, each with N nodes and K edges with fixed identical
positive weights wij . The ‘fitness’ of each graph is then assessed by deriving the
corresponding covariance matrix and calculating the global dynamical measure,
eitherH(X), I(X) or C(X). After all members of U have been assessed, the graph
with highest fitness is selected and all others are discarded. The selected graph
is then replicated U − 1 times to create the next generation. Each replication
introduces a small amount of variation by randomly rewiring r edges of the
selected graph. After a sufficient number of generations (these authors typically
used 3,000 generations, a population size U = 10 and a rewiring rate r = 1) the
members of U should have near-optimal structures for generating the particular
dynamical measure used as the selection criterion.3

Sporns et al. selected separately for graphs with high entropy H(X), high
integration I(X), and high neural complexity C(X). In each case they found
that the resulting graphs (N = 32,K = 256) had distinctive structural features,
as revealed both by simple visual inspection and by analysis using the graph-
theoretic measures described in Sect. 2.1. Graphs optimized for high entropy
contained mostly reciprocal connections without any apparent local clustering;
they had high frecip, low fclust, as well as a short diameter (diamG) and a short
characteristic path length (lpath). Graphs optimized for integration, by contrast,
were highly clustered (high fclust), had low values for frecip, large diameters and
large characteristic path lengths. Visual inspection of these graphs revealed a
very large central cluster loosely connected to an outlying mesh of nodes. Graphs
optimized for neural complexity were the most similar to the ‘small-world’ class
of networks. These graphs usually are comprised of a number of dense groups of
nodes linked by a relatively small number of reciprocal bridges; they had high
values for frecip and fclust, as well as low values for lpath and diamG.

3 Sporns et al. [14] applied three neurobiologically motivated constraints during graph
selection. First, the number of incoming edges to each node was kept constant (8).
Second, all graphs were required to be ‘strongly connected’ such that at least one
path exists between all pairs {i, j} of nodes. Third, small self-inhibitory weights wii

were applied to each graph such that the total variance – given by the sum of the
diagonal terms in COV(X) – remained constant.
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3.2 Dynamical Properties of Cortical Networks

To relate these theoretical observations to empirical data, Sporns et al. [14] an-
alyzed the complexity of the connection matrices of the macaque visual cortex
and the cat cortex. They assumed linear dynamics, equal connection strengths,
and used equation (1) to derive covariance matrices corresponding to the respec-
tive connection matrices. They found that both connection matrices gave rise to
effective connectivity with high neural complexity C(X) as compared to random
networks with equivalent N and K. Indeed, the matrices seemed to be near-
optimal for generating highly complex dynamics. Random rewiring of edges, in
virtually all cases, led to a reduction in the complexity of the corresponding
effective connectivity.

To identify the sets of anatomical areas responsible for these complex dy-
namics, these authors applied dynamical cluster analysis (see Sect. 3.1) to the
macaque visual cortex connection matrix. This analysis revealed an hierarchi-
cal organization which separated into two distinct streams corresponding to the
‘dorsal’ and ‘ventral’ visual processing streams [55], together with a small subset
of areas which were strongly interactive with both streams (these authors suggest
that these areas are strong candidates for mediating inter-stream interactions).
Overall, this dynamical analysis was highly consistent with the structural cluster
analyses of Young et al. [54] and Hilgetag et al. [56].

Another application of dynamical cluster analysis compared PET4 data ob-
tained from normal and schizophrenic subjects performing a set of cognitive
tasks [65]. This study found significant differences in cluster profiles between
these two groups, despite the absence of differences in overall levels of activity.
Future application of this analysis using imaging methods with higher temporal
resolution (for example magnetoencephalography, see [67]) may be extremely
revealing.

3.3 Matching Complexity and Degeneracy

While entropy, integration and neural complexity provide measures of the intrin-
sic dynamics of a neural system, it is also of interest to characterize the dynamics
of neural systems as they interact with a surrounding environment. Measures of
‘matching complexity’ [68] and ‘degeneracy’ [69,70] fulfil this role respectively
for systems connected to an input or to an output.

The matching complexity between system X and input S is defined as the
total complexity when the input is present C(X)T minus the intrinsic complexity
C(X)I and the complexity C(X)S that is directly attributable to the input S [68]:

M(X;S) = C(X)T − C(X)I − C(X)S . (7)

A high level of matching complexity indicates that there is strong match between
the statistical structure of the system and that of the input. A low value indicates
statistical ‘novelty’.
4 Positron Emission Tomography: A brain imaging technique based on measurement

of metabolic activity [66].
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Degeneracy refers to the ability of elements (or sets of elements) that are
structurally different to perform the same function or yield the same output [69,
70]. Degeneracy can be expressed as the mutual information between the various
subsets of a system and the system’s output [69]:

D(X;O) = MIP (X, O)−
∑

MIP (xi;O|X− xi;O), (8)

where MIP (xi;O|X − xi;O) refers to the conditional mutual information be-
tween each element and O, given the mutual information between the rest of the
system and O. Degeneracy is high for systems in which many different elements
affect the output in a similar ways but at the same time can have independent
effects. This property contributes to the robustness of a system [70].

Sporns et al. [14] extended their graph selection method (see Sect. 3.1) to
select for graphs that exhibited high matching complexity with respect to an
input, and, separately, high degeneracy with respect to an output. In the former
case, a subset of 8 nodes was connected to an 8-node sensory sheet S that had a
particular input pattern described by a covariance matrix COVs. In the latter
case, a subset of nodes was chosen as a representation of output, and selection
was carried out based on the global measure of degeneracy with respect to a
particular output pattern.

In all cases, selection for matching or degeneracy resulted in graphs with high
neural complexity C(X) [14]. This suggests that high C(X) may reflect not only
an intrinsic balance between dynamical integration and segregation, but may
also correspond to the ability of a network rapidly to distribute input signals
and robustly generate output signals.

4 Function

As we remarked in the introduction, the most general function of a biological
neural network is to generate adaptive behavior for the organism within its en-
vironment [71]. The analysis of graphs with high degeneracy and high matching
complexity begins to address this issue of function. However, in the studies de-
scribed above, there is no behavior as such: networks are coupled either to a
static input or a static output, and there is no sense in which the output at a
given time affects the input at a subsequent time.

In this section, we tackle these concerns by describing a relatively simple
model of target fixation by a simulated head/eye system that is controlled by an
artificial neural network. This model explicitly involves behavior, and its analy-
sis provides support for the hypothesis that complex neural dynamics facilitate
adaptation to rich sensory environments and motor demands [14]. An extended
analysis of this model is given in Seth & Edelman [26].

As in the studies described above, the present model makes use of the tech-
nique of evolutionary graph selection. However, instead of using a global dy-
namical measure as a fitness function, in this case the fitness of a network is
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G

H

T

Fig. 2. Simulation model of target fixation, depicting projections onto a plane (100u x
100u, where u denotes an arbitrary spatial unit), of head direction H and gaze direction
G. Also shown are target position T, and maximum offset of G from H (circle, radius
35u). The position of G is calculated as a vector sum of H and an eye direction (E, not
shown).

determined by its ability to support adaptive behavior when employed as a con-
trol mechanism for a simulated head/eye system engaged in a target fixation
task. To explore how network structure, dynamics, and function interact, we
select networks for their target fixation ability in a variety of conditions that
differ in the (qualitative) complexity of the environment and the phenotype (the
head/eye system). Networks which evolved in different conditions are then an-
alyzed in terms of their behavioral properties, their structural properties, and
their dynamical properties.

4.1 Methods

Model Outline. This section describes basic properties of the model; specifics
are provided in Appendix A. The simulated environment is a simple planar area,
100x100 arbitrary units u, within which a target (T) can appear. The simulated
head/eye system, or phenotype, is represented by the projection onto the plane
of a head direction (H) and a gaze direction (G), which is the combination of
the head direction (H) and an eye direction (E) relative to the head (Fig. 2).

The velocities of H and E in the x, y plane, and thus the position of G, are
controlled by a neural network (N = 32, K = 256). The edges of this network
have real-valued weights, and certain nodes are specified as sensory inputs and
others as motor outputs (see below). The remainder are ‘interneurons’ mediating
the transformation of input signals into output signals. Evolutionary algorithms
are used to specify the connectivity and weight distribution of networks so that
they give rise to adaptive behavior, which in this case consists of maximizing
the time for which G and T are aligned (i.e. keeping the target fixated) while
simultaneously minimizing the offset between H and G (i.e. keeping the head



Theoretical Neuroanatomy 495

Table 1. Phenotype parameters in the four conditions (ES , ET , EH , and EC).
VmaxH , VmaxE : maximum velocity of head and eye, AH , AE : motor gain of head and
eye, mH , mE : momentum of head and eye, lag: the time-lag between head motor node
output and head movement.

Condition VmaxH VmaxE AH AE mH mE lag

ES 7.0 7.0 1.0 1.0 0.0 0.0 0
ET 7.0 7.0 1.0 1.0 0.0 0.0 0
EH 5.0 10.0 0.33 1.0 0.75 0.05 10
EC 5.0 10.0 0.33 1.0 0.75 0.05 10

and eye aligned). A constraint on the system is that G must remain within 35u
of H, as indicated by the circle in Fig. 2.

Environment/Phenotype Conditions. We specify four conditions which are
distinguished by properties of the target and the head/eye phenotype. The phe-
notype is defined by seven parameters: VmaxE specifies the maximum velocity
of H, VmaxH specifies the maximum velocity of E with respect to H; motor gain
parameters AH and AE specify scaling factors relating motor node output to H
and E velocity; momentum parameters mH and mE specify the inertial resis-
tance of H and E, and lag specifies a time-lag between head motor node output
and head movement. These parameters constrain the movements of H, E and G
as described in Appendix A (which also describes how T is updated).

The values taken by the parameters in the four conditions are shown in
Table 1. In condition ES (for ‘simple’) both the head and eye have the same
maximum velocity, identical motor gains, and zero momentum; the target is sta-
tionary. Condition ET (for ‘tracking’) presents a more complex environment in
which the target may occasionally jump to a different random location and/or
drift at a slow speed in a random direction; the phenotype is the same in condi-
tion ES . Condition EH (for ‘head’) keeps the simple environment of condition
ES but introduces a more complex phenotype in which E can move twice as fast
as H, has a higher motor gain, a much lower momentum, and in which there is a
non-zero time-lag. Finally, condition EC (for ‘complex’) combines the properties
of both conditions ET and EH and is therefore the richest of the four.

Network Implementation. Each behavioral trial begins with the head and eye
aligned and pointing to the center of the plane. The target position is initialized
at a randomly selected location within 20u of this point. All trials last for 600
time steps, each of which involves updating the state of the network controller
(X) as well as the positions of E, G, H, and, in conditions ET and EC only, T.
The network is updated using, for all nodes j,

sj(t) = f

(
sin(j, t) +

K∑

i=1

Cij(X)si(t− 1)

)
, sj(0) = 0.0, (9)
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where sj(t) is the output of node j at time t, sin(j, t) denotes the sensory input
to node j at time t (if any), f is a sigmoid function with input range ±10.0 and
output range ±1.0, and Cij(X) is the connection matrix of X.

Six nodes are specified as ‘sensory’ inputs, two responding to the x, y dis-
placement of G from T (with a maximum range of ±50.0u), and four delivering
‘proprioceptive’ information, two of which reflect the displacement of H from the
center of the plane (range ±50.0u), and two of which reflect the displacement
of G from H (range ±35.0u). In all cases, input values are linearly scaled to the
range ±1.0. Four nodes are specified as output nodes, two influencing H velocity
in the x, y plane, and two influencing the velocity of E. Appendix A describes
how the activities of these nodes, along with the values in Table 1, are used to
update the positions of E, G, and H.

Network Structure. Evolutionary algorithms (EAs) were used to specify the
connectivity and weight distribution of networks so that they supported target
fixation behavior.5 We ran a total of 40 separate EAs: 10 replications of the
selection process for each of the four environment/phenotype conditions.

Each EA evolved a population of 64 networks over 2000 generations, with
each network initialized (generation 0) by randomly allocating K connections
(each connection strength assigned randomly in the range ±1.0), subject to
the constraint that each node had 8 incoming connections. Each generation in-
volved evaluating the fitness of each network, as described below, and then using
stochastic rank-based selection to replace low-fitness networks with mutated ver-
sions of high-fitness networks. Each mutation of a network involved randomly
rewiring 1 connection (preserving in-degree) and also modifying the strength of
each connection (probability 0.05 per connection) in the range ±0.1.

The fitness of a network was calculated as the mean of four separate behav-
ioral trials, with the fitness of each trial (φ) given by

φ =
tf
ttot

+ c0(1.0− c1d̄), (10)

where tf denotes the number of time steps for which the target was fixated
(within a tolerance of 3u), ttot the total number of time steps in the trial (600),
and d̄ the mean offset for the trial between H and G. The constants c0 and c1
were selected in order to balance the fitness contributions due to target fixation
and those due to minimizing the offset between H and G (c0 = 1

4 , c1 = 1
35 ).

5 We used a distributed evolutionary algorithm [72]: Each EA was initialized by ar-
ranging the population on an 8x8 toroidal grid and evaluating the fitness of each
network. Each subsequent generation involved 64 repeats of the following: A random
grid position was chosen determining a 3x3 sub-grid. Stochastic rank-based selec-
tion was then used to select a weak member of this sub-grid for replacement, and
a strong member as the ‘parent’. A mutated copy of the parent then replaced the
weak member and was evaluated (the parent was also re-evaluated with probability
0.75).
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Table 2. Summary of target fixation performance. Shown are mean percentage of each
behavioral trial for which T was fixated (within a tolerance of 3u), and mean displace-
ment of G from H, for each network type. Average values were calculated from 10
behavioral trials of each evolved network in the corresponding environment/phenotype
condition. Standard errors are given in parentheses.

Network type fixation % |G-H| (u)
S-network 98.81 (0.01) 0.28 (0.07)
T-network 92.43 (0.51) 0.92 (0.08)
H-network 96.15 (0.79) 1.94 (0.19)
C-network 84.76 (1.23) 15.41 (0.50)

4.2 Results

For convenience, networks which evolved in condition ES will be referred to as
S-networks, with the same nomenclature for conditions ET (T-networks), EH
(H-networks) and EC (C-networks).

Behavioral Analysis. The target fixation behavior of evolved networks was
assessed by measuring the percentage of each behavioral trial for which the target
was fixated (i.e. the fraction of time steps for which the displacement between
H and G was less than 3u). Table 2 shows that average fixation performance
was very high for S-networks, T-networks, and H-networks, and slightly lower
for C-networks.

Figure 3 shows representative examples of successful fixation behavior for
S-networks and C-networks in the corresponding conditions (ES and EC respec-
tively). Inspection of the trajectories of the head and the eye indicates that the
behavioral dynamics for C-networks were qualitatively more complex than for
S-networks. A non-trivial coordination of head and eye is needed in EC con-
ditions in order to maintain consistent fixation of the target. Table 2 affirms

ss

5u

cc

25u

Fig. 3. Typical successful fixation behavior for S-networks in condition ES (left) and
for C-networks in condition EC (right), showing trajectories of G (solid line), H (dotted
line) and T (dashed line, EC only), gray circle indicates initial positions of G and H,
gray arrows indicate initial positions of T. Successful target tracking by C-networks is
indicated by the overlap of the trajectories of G and T.
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(a) Robustness to perturbation (b) S-network (c) C-network

Fig. 4. Robustness of S-networks and C-networks to a novel perturbation: (a) Mean
displacement of G from T during enforced H movement, calculated over the 20 time
steps of enforced movement and the 10 time steps following for 10 S-networks and 10
C-networks. Asterisk indicates statistical significance (p < 0.001, two-tailed t test).
(b,c) trajectories generated by a typical (b) S-network and (c) C-network during this
operation (solid line G, dotted line H, gray circles indicates initial positions of G and
H, gray arrows indicate positions of T). For the S-network, fixation is lost (both H and
G are displaced from the target), whereas for the C-network, fixation is maintained (G
remains close to the target even though H is displaced).

that the average displacements between H and G were considerably larger in for
C-networks than for all other network types, while target fixation was achieved
reliably in all cases.

To better compare the behavioral properties of S-networks and C-networks,
they were reevaluated in a novel condition involving unexpected perturbations.
As in condition ES , the environment was initialized with a stationary target T.
An evolved S-network or C-network was then introduced and allowed to fixate.
After 100 time steps, a head velocity (Vhx, Vhy) of between 1.0 and 3.0 (u per
time step) was induced for 20 time steps in a random direction. Importantly,
neither network type had been selected to respond adaptively to this pertur-
bation. Nevertheless, Fig. 4 illustrates that C-networks were generally able to
maintain fixation, whereas S-networks were not. These results show that net-
work optimization in a rich environmental/phenotypic context can facilitate the
emergence of robust behavior.

Structural Analysis. To assay reliable structural differences between network
types, connectivity matrices were transformed into binary adjacency matrices
Aij(X) by replacing all non-zero elements in Cij(X) with the value 1 (we also
tried various thresholds, see below). We calculated four graph-theoretic quanti-
ties from each Aij(X): frecip, diamG, lpath, and fclust (see Sect. 2.1).

Table 3 shows the results of applying these metrics to the fittest networks
from each EA in each condition. Values were also calculated for an additional
64 random networks (R-networks) with equivalent N and K (and a per-node in-
degree of 8). The table indicates that there are no significant differences between
network types (including random) in any of the metrics.
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Table 3. Structural analysis of network types showing values for frecip, diamG, lpath

and fclust. Each entry in the table shows mean and standard error (in parentheses)
calculated from 10 networks of each type (64 for R-networks).

Network type frecip diamG lpath fclust

S-network 0.27 (0.028) 3.1 (0.32) 1.82 (0.01) 0.25 (0.001)
T-network 0.26 (0.006) 3.2 (0.42) 1.83 (0.02) 0.25 (0.001)
H-network 0.26 (0.019) 3.3 (0.67) 1.83 (0.03) 0.25 (0.001)
C-network 0.27 (0.023) 3.0 (0.01) 1.82 (0.01) 0.24 (0.001)
R-network 0.27 (0.042) 3.0 (0.01) 1.82 (0.01) 0.25 (0.001)

Why are no differences observed? It may be that the transformation of Cij(X)
into Aij(X) overemphasizes the importance of weak connections. We tested this
possibility by recalculating values after thresholding adjacency matrices to in-
clude only relatively strong connections. We tested a variety of thresholds, but
in no case did we observe differences in structural measures among conditions.
This suggests that specific connection strengths may be critical for the behavioral
properties of the networks. Importantly, this is not to say that network anatomy
is irrelevant to the behavioral differences among the network types; rather, it
emphasizes the need for graph-theoretic measures which can be usefully applied
to weighted networks as well as to binary networks [73,74].

4.3 Dynamical Analysis

Intrinsic Dynamics. As a first approach to describing the dynamical properties
of evolved networks, we treated the evolved Cij(X) matrices as in Sect. 3.1, i.e.,
assuming linear dynamics and activation by Gaussian noise, we applied equation
(1) to derive the corresponding covariance matrices. An important property of
this method is that COV(X), and therefore also the resulting values of C(X),
I(X), and H(X), are independent of behavioral context. This method is therefore
best described as characterizing the intrinsic dynamical properties of a network.

For each EA, the fittest member of the final generation was used to generate
a covariance matrix, which in turn was used to calculate the intrinsic neural
complexity C(X), integration I(X), and entropy H(X) of the network dynamics.
Values were also calculated for 64 R-networks.

Figure 5 shows mean and standard deviations of intrinsic C(X), I(X), and
−H(X), for each network type. In contrast to the structural analysis (see
above), clear differences are evident: Random R-networks scored lowest on
all three dynamical measures, and C-networks scored highest. Differences be-
tween C-networks and all other networks were significant at the p < 0.01 level
by two-tailed t test for C(X), I(X), and H(X). These observations indicate
that adaptation to comparatively complex environmental/phenotypic conditions
(EC) endows C-networks with above random neural complexity and integration,
and below random entropy. Furthermore, only networks with these dynamical
characteristics displayed the behavioral robustness and flexibility as described
above.
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Fig. 5. Mean and standard error intrinsic C(X), I(X), and −H(X) for S-networks
(S), T-networks (T), H-networks (H), C-networks (C), and R-networks (R). Asterisks
indicate that the value for C-networks is significantly higher than for all other network
types (p < 0.01, two-tailed t tests). Values of C(X), I(X) and −H(X) for S-networks,
T-networks, and H-networks are significantly lower than the corresponding values for
C-networks, and significantly higher than the corresponding values for R-networks (p <
0.01, two-tailed t tests). There are no significant differences in C(X), I(X) or −H(X)
among S-networks, T-networks, and H-networks. All distributions are normal (p <
0.05, Bera-Jarques test).

Figure 5 also shows that S-networks, H-networks, and T-networks scored at
intermediate levels on all measures. Values of C(X), I(X) and −H(X) for these
networks are significantly lower than the corresponding values for C-networks,
and significantly higher than the corresponding values for R-networks (p < 0.01,
two-tailed t tests); there are no significant differences in C(X), I(X) or −H(X)
among S-networks, T-networks, and H-networks. Changes in intrinsic dynamics,
therefore, depend both on properties of the environment (condition ET ) and on
properties of the phenotype (condition EH).

While these results show that neurally complex network dynamics can accom-
pany adaptive behavior in rich environmental/phenotypic conditions, intrinsic
neural complexity is not unique in this respect, since similar patterns of results
are apparent for both intrinsic integration I(X) and entropy H(X).

Interactive Dynamics. An alternative approach to characterizing network dy-
namics is to derive covariance matrices directly from recordings of node activities
during behavior, i.e. while the network is actively transforming input signals into
output signals. We define the resulting dynamics as ‘interactive’ since they are
relative to a particular behavior, environment, and phenotype. One important
property of interactive dynamics, as compared to intrinsic dynamics, is that
they enable comparison of dynamics generated by the same network in different
behavioral regimes or in different environments/phenotypes.

Each behavioral trial yields a (N x 600) matrix F which contains the indi-
vidual activity records of each node for all 600 time steps. This matrix can be
used to generate a covariance matrix according to:
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Fig. 6. Representative behavior for various network-environment/phenotype combina-
tions, showing trajectories of G (solid line), H (dotted line) and T (dashed line), gray
circles indicate initial positions of G and H, gray arrows indicate initial positions of
T. RC: R-network in condition EC , RS: R-network in condition ES , SC: S-network in
condition EC , CS: C-network in condition ES . Trajectories of a C-network in condition
EC and an S-network in condition ES are shown in Fig. 3.

COV(X) = cov(Ḟ), (11)

where Ḟ is the first derivative (with respect to time) of the activity matrix and
cov() is a standard covariance function. This approach was chosen because rates
of change of node activities are more likely to reflect interactions between the
network and its phenotype and environment, than are absolute activity levels.
COV(X) can then be used to calculate corresponding values of interactive C(X),
I(X) and H(X) in just the same way as for the calculation of intrinsic dynamics.
Note that calculation of interactive dynamics does not require equation (1) and
so does not assume linear system dynamics.

We compared interactive dynamics for C-networks, S-networks, and random
R-networks evaluated in both EC and ES conditions, recording both network
activities and behavioral trajectories. Figure 6 shows representative trajectories
from the various combinations (trajectories of a C-network in condition EC
and an S-network in condition ES are shown in Fig. 3). R-networks in EC and
ES conditions never achieve fixation, and their behavior is highly variable. S-
networks in EC conditions are unable to achieve or maintain fixation despite a
general tendency to track towards the target, and C-networks in ES conditions
rapidly achieve fixation despite some persistent oscillation in the head direction.
Notice that in all except the last of these cases, the behavioral dynamics are
rich, even though the behavior itself is not adaptive.
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Fig. 7. Interactive C(X), I(X), and −H(X) calculated from covariance matrices derived
from recorded neural activity during behavior. CC: C-network in condition EC , SC:
S-network in condition EC , CS: C-network in condition ES , SS: S-network in condition
ES , RS: R-network in condition ES , RC: R-network in condition EC . Each column
shows mean and standard error calculated from 10 repetitions of each combination of
network and condition. There is a significant correlation between the rank ordering of
combination (from ‘CC’ to ‘RC’) and mean C(X) (r = 0.97, p < 0.01; Spearman’s rank
correlation). No significant correlations exist for I(X) or −H(X) (p > 0.1). Asterisks
indicate statistically significant differences between combinations ((*) p < 0.01, (**)
p < 0.05, two-tailed t tests; only adjacent combinations were tested). All distributions
are normal (p < 0.05, Bera-Jarques test).

Figure 7 shows the interactive dynamics generated in each combination of
network and condition. The top row shows a clear gradient in interactive C(X)
proceeding from C-networks in condition EC (‘CC’; high), to R-networks in
conditions ES and EC (‘RS’, ‘RC’; low). Intermediate values of C(X) were ob-
served for simple networks in rich environmental/phenotypic conditions (‘SC’),
and for complex networks in simple conditions (‘CS’). C-networks in condition
EC (‘CC’) have significantly higher C(X) than all other combinations. The re-
maining significant differences among combinations are also consistent with the
steady gradient in interactive C(X).

Strikingly, only C(X) shows a pattern of values reflecting rich adaptive be-
havior. Neither I(X) (Fig. 7, middle row) nor H(X) (bottom row) show any
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such sensitivity. This is in contrast to the intrinsic analysis, in which all three
dynamical measures behaved in a similar way (Fig. 5).

It is also notable that R-networks evoke low interactive C(X) despite dis-
playing the rich behavioral patterns shown in Fig. 6. The contrast between R-
networks and C-networks, together with the steady gradient in interactive C(X)
across combinations (Fig. 7, top row), suggests that C(X) is indeed selectively
sensitive to the dynamics of rich adaptive behavior. Figure 7 also suggests that
high interactive C(X) depends on a combination of environmental and pheno-
typic properties. The intermediate values of C(X) in Fig. 7 (‘SC’ and ‘CS’) are
consistent with the intermediate values of intrinsic C(X) associated with rich
environments (condition ET ) and complex phenotypes (condition EH) shown in
Fig. 5.

4.4 Summary

In this model, evolutionary algorithms were used to generate neural networks
able to support target fixation in environment/phenotype combinations of qual-
itatively different levels of complexity. Not surprisingly for a selectional sys-
tem, we found that those networks which evolved under rich environmen-
tal/phenotypic conditions exhibited (qualitatively) more complex behavior than
networks which evolved in comparatively simple conditions (Fig. 3). When com-
pared in a condition involving a novel perturbation, networks which evolved in
rich conditions showed greater robustness than networks which evolved in simple
conditions (Fig. 4).

This robustness was reflected by significantly higher neural complexity C(X)
for networks in evolved in rich conditions, than for networks which evolved in
relatively simple conditions, or for equivalent random networks (figs. 5 and 7).
This was true for both intrinsic and interactive methods of calculating dynam-
ics, where the former are derived analytically from network connectivity, and the
latter are computed from observed network activity during behavior. However,
while intrinsic dynamics did not differentiate between neural complexity C(X),
integration I(X) or entropy H(X) (Fig. 5), interactive dynamics revealed that
only C(X) consistently associated with adaptive behavior in rich environmen-
tal/phenotypic conditions (Fig. 7).

Both types of dynamical analysis indicate that the magnitude of neural com-
plexity depended on a combination of environmental, phenotypic, and mecha-
nistic properties. Networks evolved in conditions of intermediate richness (ET
and EH) generated intermediate values of intrinsic C(X) (Fig. 5). Networks
evolved in rich environmental/phenotypic conditions, and tested in simple condi-
tions, and vice-versa, generated intermediate values of interactive C(X) (Fig. 7).
Taken together these results show that, in the present target fixation task, neural
complexity is selectively sensitive to the dynamics of adaptive behavior in rich
environmental and phenotypic conditions.
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5 General Discussion

This chapter has surveyed a network-theoretic approach to neuroscience at the
levels of structure, dynamics and function. While the coverage has not been
comprehensive, we have described some key results and techniques that can be
applied not just to vertebrate cortical networks but to the analysis of complex
network systems of many different kinds. For example, the new results described
in the previous section show the importance of drawing a sharp distinction be-
tween the dynamical patterns a network may support, and the functional appli-
cations that these patterns may serve.

5.1 Structure

Structure provides the most basic level of analysis of cortical networks. Many
interesting features are revealed by the application of graph-theoretic and sta-
tistical analytical tools, most notably the presence of small-world characteristics
as well as the prevalence of reentrant connectivity [14].

However, current structural analysis has certain important limitations. De-
tailed structural information is hard to obtain, especially at the microscopic level
of neuron-to-neuron connectivity, especially with regard to the human brain.
Moreover, this fine structure is continually changing as a result of a host of
activity-dependent plasticity processes. Also, most methods of structural analy-
sis assume unweighted, binary networks (although see [73–75]) and also assume
that all nodes are essentially identical. Neither assumption is remotely satis-
fied in the case of the brain, and it is certain that both neuronal diversity and
differences among synaptic strengths are essential for normal brain function.

Nonetheless, the rapid development of novel graph-theoretic methods [41,18],
together with the accelerating accumulation of detailed neuroscientific data sets
[32,33], promises that future structural analyses will reveal further important
features of the structural organization of neural systems.

5.2 Dynamics

Anatomical structure gives rise to neural dynamics. The tools of statistical in-
formation theory are well suited to the analysis of these dynamics. It bears
emphasizing that the global dynamical measures described in this chapter apply
equally well to dynamics generated by both binary and weighted networks; in
this sense, at least, dynamical analysis may be more generally applicable than
structural analysis.

However, some assumptions have to be made in the application of these
measures. For example, the analytical derivation of a covariance matrix from a
connectivity matrix requires that linear dynamics be assumed. At least in some
cases, linear and non-linear systems behave similarly with respect to effective
connectivity [58], and it has also been argued that large-scale dynamics of in-
teracting brain areas are accurately represented by linear systems [76,77]. Also,
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one may drop assumptions of linear dynamics by deriving covariances directly
from recorded activity (see Sect. 4.3).

Calculation of entropy from covariance further assumes that network activity
can be described as a stationary Gaussian process. This condition is by definition
satisfied for calculation of intrinsic dynamics (see Sect. 3.1), but may not be
strictly satisfied in the calculation of interactive dynamics from network activity
during behavior. Indeed, it is a fact that many natural processes are not well
modeled as stationary. Information-theoretic treatment of non-stationary signals
has been widely discussed [78,79,62], and as long as deviations from stationarity
are not too extreme, such techniques remain well placed to provide insight into
the structure of dynamical interactions that a network produces.

More generally, the present methods are cross-sectional: Covariance matrices
are derived from observations of network activity at successive time slices, so that
correlations over time exhibited in the activity profiles of single nodes are over-
looked (by definition, the analytical calculation of intrinsic dynamics assumes
that there are no such correlations). A contrasting approach, which focuses on
these correlations, is provided by a growing literature concerned with measur-
ing the information content of single spike trains [21–24]. Integrating these two
approaches stands out as an important challenge for theoretical neuroscience.

Notably absent from this chapter has been any mention of neural synchrony.
Some of the most obvious features of human brain dynamics are the promi-
nent oscillations in different frequency bands known as the delta (3-5Hz), alpha
(8-13Hz), beta (10-20Hz) and gamma (35-80Hz) rhythms. Different functional
roles have been proposed (but not proven) for these rhythms; for example, delta
oscillations have been associated with the maintenance of items in short-term
memory [80], and alpha oscillations are strongest during sleep and relaxed wake-
fulness [81], and may represent an ‘idling state’ of the brain.

Gamma oscillations have a controversial interpretation: it has been suggested
that gamma oscillations serve to ‘bind’ together disparate neural processes into
globally integrated activity patterns [45,82,83]. In support of this idea, detailed
computer simulations of visual cortical areas have shown that reentrant inter-
actions can synchronize the activity of anatomically segregated neural areas,
leading to coherent perceptual performance and behavior in visually complex en-
vironments [44,47]. Computer simulations have also suggested that small-world
architectures may be particularly suitable for facilitating neural synchrony [84].

5.3 Function

Linking dynamic patterns to functional roles is perhaps the least visited of the
tasks facing a science of networks. However, it is at least as important as under-
standing structural and dynamical features by themselves. Many structural and
dynamical features of brains have been selected by evolution precisely because
of the adaptive functions they provide for the organism. Functional criteria can
also be described for networks of many other kinds, for example power grids
(the transmission of power from source to consumer) and telephone networks
(the maintenance of uninterrupted service for clients).
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As for the brain, we remarked above that neural synchrony may play an es-
sential role in binding disparate neural processes to a common purpose. More
generally, the results described in this chapter support the view that the brain is
a selectional system [43], in which complex neural dynamics may facilitate adap-
tation to rich sensory environments and motor demands by providing a special
kind of flexibility in the balance between dynamical integration and dynamical
segregation. It has even been suggested that neurally complex dynamics in the
thalamocortical system constitute the neural correlates of conscious states in
humans and other animals [64,46,85]. Further empirical research and theoretical
analysis of the interactions between dynamics and function are therefore likely
to be valuable for neuroscience in the broader context of modeling the situated
organism [86].

5.4 Summary

While important insights can be, and have been gained by analyses at the lev-
els of structure, dynamics, and function separately, it must be recognized that
in biological systems these levels are in complex and continuous interaction.
Structure is continually changing as a result of activity-dependent plasticity
processes. These structural changes evoke dynamical changes which shape the
behavior of the organism, and behavior itself determines the correlations in the
sensory signals that impinge on these networks, triggering further dynamical
changes and structural alterations. Finding a language in which to articulate
these complex couplings is the major challenge for a network-theoretic approach
to neuroscience. Success in this task will advance not just neuroscience, but also
our understanding of many other network systems in which interactions among
structure, dynamics, and function are important.
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Appendix A: Implementation Details

Motor node outputs (shx, shy, sex, sey) are used to update E, H and G according to:

Vhx(t) = mHVhx(t − 1) + AH(1 − mh)shx(t − lag), (12)

Vhy(t) = mHVhy(t − 1) + AH(1 − mh)shy(t − lag), (13)

Vex(t) = mEVex(t − 1) + AE(1 − mE)sex(t), (14)

Vey(t) = mEVey(t − 1) + AE(1 − mE)sey(t), (15)

where Vhx(t), Vhy(t) represent the velocity of H in the x, y directions respectively at
time t, and Vex(t), Vey(t) represent the velocity of E. In all cases, V (t) is bounded by



Theoretical Neuroanatomy 507

the corresponding value of Vmax. These values, as well as those of AH , AE , mH , mE ,
and lag, are specified for each condition in the text. The positions of E, H and G in
the x, y plane are then updated using:

H(t) = H(t − 1) + Vhx(t) + Vhy(t), (16)

E(t) = E(t − 1) + Vex(t) + Vey(t), (17)

G(t) = H(t) + E(t), (18)

where H(t) and G(t) represent the positions of H and G on the x, y plane at time t,
and E(t) represents the position of the eye relative to H. If the distance between G and
H exceeds 35.0u then G is not updated at that time step. In conditions EC and ET the
target position (T) is also updated at each time step, alternating between 50 time steps
of drift and 50 time steps without drift. Each period of drift is in a random direction
at a random speed in the range 0.5 to 1.5 (u per time step). During the intervening
periods T is stationary except for occasional jumps (with a probability of 0.025 per
time step), each to a randomly chosen location within a radius of 25u to 31u of its
previous location. The target cannot leave the 1002u2 area: If drift is leading it out of
bounds the appropriate velocity component is reversed at the boundary.
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Rényi 50
random graph 27, 30, 39, 42, 44, 48, 53,

57, 58, 63, 64, 71, 81, 82, 84, 86, 89,
91, 92, 98, 102–105, 119, 127, 128,
132–136, 141, 144, 163, 168, 169, 171,
174, 176–183, 187, 197, 203, 223, 238,
244, 251–254, 262, 351, 358, 359, 366,
370, 399, 401, 409, 426, 429, 430, 435,
447

random matrix 35, 36, 406, 407
random tree 216
random tree 224, 225, 412
random walk 30, 36, 140, 150
random-sequential Monte Carlo 255
range-based attacks 299, 305
rate-equation 151, 152
Redner 50, 86, 124, 136, 162, 185, 186,

211, 233, 348, 367, 369
remaining degree 115, 116, 194, 202
replica trick 280
repository 313
residual graph 6
resilient 18, 20
rich get richer 229
RNA 333
routing 3, 17, 425, 427, 428, 435, 439

S. cerevisiae 110, 443, 448, 449, 453
sabotage 20
Saccharomyces cerevisiae 110, 455

Samukhin 33–35, 50, 86, 124, 125, 162,
185–187, 233

Santa Fe Institute 189, 205, 207, 274,
337, 367

satisfiability 253
scalability 255–258, 269, 272, 279
scale-free 3, 4, 8–11, 17, 18, 22, 25, 28,

30–32, 35, 36, 43, 44, 46–49, 86,
103–105, 113, 143, 149, 159, 170, 173,
179, 181, 182, 184, 189–192, 198,
203–206, 272, 273, 278, 299, 300,
302–306, 308, 309, 367, 369, 372, 379,
382, 397, 399, 400, 404, 414, 416, 418,
425–427, 430, 432, 434, 438, 443,
445–449, 453, 454, 456, 457, 486

scaling 4, 27, 28, 31, 51, 58, 62, 86, 103,
109, 132, 141, 142, 148, 149, 157, 189,
190, 194, 201, 203, 205, 211, 212, 214,
215, 218, 224, 225, 228, 231, 250,
258–261, 267, 268, 277, 279–285, 287,
288, 290, 295–297, 304, 306, 308, 309,
326, 359, 369, 415, 426, 429, 432–434,
456, 487, 495, 509

scattering 291–293
scheduling 235
scholarly information network 313
scientific coauthorship networks 337,

510
search tree 236–239, 243–247, 249–252
segment polarity gene network 463,

475, 479, 480
selection principle 221
self-consistent Born approximation

(SCBA) 291
self-organizing processes 443
Seth 483, 493, 506, 508–510
shareholder network 413, 414
shell 12, 30
shortest path 19, 38, 127, 128, 263,

305–307, 352, 354, 355, 374, 377, 387,
389, 486

simulated annealing 189, 202–204, 212
SLAC SPIRES-HEP database 324
small-world 36, 104, 119, 169, 189, 205,

255, 261–263, 266, 267, 271, 277–280,
283–285, 287–290, 293–296, 299–
302, 305, 309, 357, 359, 368, 397, 398,
445, 456, 486, 504, 505, 510, 511

social group 386, 395



Index 519

social network 143, 145, 337, 339, 348,
350, 353, 360, 367, 369, 371, 372,
377–379, 386, 396, 400, 402

soft network 288, 290, 291, 295
software class diagrams 199
Solé 189
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